Tính giá trị biểu thức:
a, 5 3 + 3 4 + 4 . 2 + 27 - 3 : 4
b, 124 : 3 2 . 7 - 1 10 + 24 : 5 2
c, 245 - 4 16 : 8 + 2 4 . 3 2 - 9
d, 375 : 5 3 - 3 8 : 3 6 - 2 . 2 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để tính giá trị của biểu thức P=(x^3+12x−9)^{2005}=(√3+12√−9)^{2005} với x=3√4(√5+1)−3√4(√5−1). Đầu tiên, ta thay x bằng giá trị đã cho vào biểu thức P: P=(3√4(√5+1)−3√4(√5−1))^3+12(3√4(√5+1)−3√4(√5−1))−9)^{2005} Tiếp theo, ta thực hiện các phép tính để đơn giản hóa biểu thức: P=(4(5+1)^{1/2}−4(5−1)^{1/2})^3+12(4(5+1)^{1/2}−4(5−1)^{1/2})−9)^{2005} =(4√6−4√4)^3+12(4√6−4√4)−9)^{2005} =(4√6−8)^3+12(4√6−8)−9)^{2005} =(64√6−192+96√6−96−9)^{2005} =(160√6−297)^{2005} ≈ 1.332 × 10^3975
b) Để tính giá trị của biểu thức Q=x^3+ax+b=√3+√a+√b^2+√a^3+√3+√a−√b^2+√a^3 với x=3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27). Tương tự như trên, ta thay x bằng giá trị đã cho vào biểu thức Q: Q=(3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27))^3+a(3√−b^2+√b^2/4+a^3/(27+3√−b^2−√b^2/4+a^3/27))+b Tiếp theo, ta thực hiện các phép tính để đơn giản hóa biểu thức: Q=(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))^3+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b =−b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b ≈ −b^3+3√b^2/4+a^3/(27−3b√b^2/4+a^3/(27))+a(−b+√b^2/4+a^3/(27−b+√b^2/4+a^3/27))+b
a: \(2\dfrac{3}{5}+1\dfrac{2}{5}\cdot\dfrac{31}{2}\)
\(=\dfrac{13}{5}+\dfrac{7}{5}\cdot\dfrac{31}{2}\)
\(=\dfrac{26}{10}+\dfrac{217}{10}=\dfrac{243}{10}\)
b: \(4\dfrac{3}{4}-3\dfrac{2}{3}:1\dfrac{1}{6}\)
\(=\dfrac{19}{4}-\dfrac{11}{3}:\dfrac{7}{6}\)
\(=\dfrac{19}{4}-\dfrac{11}{3}\cdot\dfrac{6}{7}\)
\(=\dfrac{19}{4}-\dfrac{22}{7}\)
\(=\dfrac{19\cdot7-22\cdot4}{28}=\dfrac{45}{28}\)
a)
`6:5/2-3/10`
`=6xx2/5-3/10`
`=12/5-3/10`
`=24/10-3/10`
`=21/10`
b)
`4/6:4/3+5:4/3`
`=2/3xx3/4+5xx3/4`
`=3/4xx(2/3+5)`
`=3/4xx(2/3+15/3)`
`=3/4xx17/3`
`=17/4`
\(a,6:\dfrac{5}{2}-\dfrac{3}{10}\\ =\dfrac{6}{1}:\dfrac{5}{2}-\dfrac{3}{10}\\ =\dfrac{6}{1}\times\dfrac{5}{2}-\dfrac{3}{10}\\ =\dfrac{12}{5}-\dfrac{3}{10}\\ =\dfrac{12\times2}{5\times2}-\dfrac{3}{10}\\ =\dfrac{24}{10}-\dfrac{3}{10}\\ =\dfrac{21}{10}\)
\(b,\dfrac{4}{6}:\dfrac{4}{3}+5:\dfrac{4}{3}\\ =\dfrac{4}{6}:\dfrac{4}{3}+\dfrac{5}{1}:\dfrac{4}{3}\\ =\dfrac{4}{3}:\left(\dfrac{4}{6}+\dfrac{5}{1}\right)\\ =\dfrac{4}{3}:\left(\dfrac{4}{6}+\dfrac{5\times6}{1\times6}\right)\\ =\dfrac{4}{3}:\left(\dfrac{4}{6}+\dfrac{30}{6}\right)\\ =\dfrac{4}{3}:\dfrac{34}{6}\\ =\dfrac{4}{3}:\dfrac{17}{3}\\ =\dfrac{4}{3}\times\dfrac{3}{17}\\=\dfrac{12}{51} \\ =\dfrac{4}{17}.\)
a) \(\dfrac{5}{3}+\dfrac{4}{9}:\dfrac{1}{2}=\dfrac{5}{3}+\dfrac{4}{9}\times2=\dfrac{5}{3}+\dfrac{8}{9}=\dfrac{23}{9}\)
b) \(\dfrac{11}{10}-\dfrac{2}{5}:\dfrac{2}{3}=\dfrac{11}{10}-\dfrac{2}{5}\times\dfrac{3}{2}=\dfrac{11}{10}-\dfrac{3}{5}=\dfrac{11}{10}-\dfrac{6}{10}=\dfrac{5}{10}=\dfrac{1}{2}\)
Câu 4
\(\dfrac{12\times15\times20}{10\times16\times25}=\dfrac{3\times4\times3\times5\times4\times5}{5\times2\times4\times4\times5\times5}=\dfrac{3\times3}{5\times2}=\dfrac{9}{10}\)
Câu 3:
\(a.\dfrac{5}{3}+\dfrac{4}{9}:\dfrac{1}{2}=\dfrac{5}{3}+\dfrac{8}{9}=\dfrac{15}{9}+\dfrac{8}{9}=\dfrac{23}{9}\)
\(b.\dfrac{11}{10}-\dfrac{2}{5}:\dfrac{2}{3}=\dfrac{11}{10}-\dfrac{3}{5}=\dfrac{11}{10}-\dfrac{6}{10}=\dfrac{5}{10}=\dfrac{1}{2}\)
Câu 4:
\(\dfrac{12\times15\times20}{10\times16\times25}=\dfrac{3\times3\times1}{2\times1\times5}=\dfrac{9}{10}\)
`a)A=\sqrt{4+2sqrt3}`
`=\sqrt{3+2sqrt3+1}`
`=sqrt{(sqrt3+1)^2}`
`=sqrt3+1`
`B)1/(2-sqrt3)+1/(2+sqrt3)`
`=(2+sqrt3)/(4-3)+(2-sqrt3)/(4-3)`
`=2+sqrt3+2-sqrt3`
`=4`
`\sqrt{4x-12}+sqrtx{x-3}-1/3sqrt{9x-27}=8`
`đk:x>=3`
`pt<=>2sqrt{x-3}+sqrt{x-3}-sqrt{x-3}=8`
`<=>2sqrt{x-3}=8`
`<=>sqrt{x-3}=4`
`<=>x-3=16`
`<=>x=19`
Vậy `S={19}`
`a)A=\sqrt{4+2sqrt3}`
`=\sqrt{3+2sqrt3+1}`
`=sqrt{(sqrt3+1)^2}`
`=sqrt3+1`
`B)1/(2-sqrt3)+1/(2+sqrt3)`
`=(2+sqrt3)/(4-3)+(2-sqrt3)/(4-3)`
`=2+sqrt3+2-sqrt3`
`=4`
`\sqrt{4x-12}+sqrt{x-3}-1/3sqrt{9x-27}=8`
`đk:x>=3`
`pt<=>2sqrt{x-3}+sqrt{x-3}-sqrt{x-3}=8`
`<=>2sqrt{x-3}=8`
`<=>sqrt{x-3}=4`
`<=>x-3=16`
`<=>x=19`
Vậy `S={19}`
a) 32 . 53 + 92 = 9 . 125 + 81
= 1 125 + 81 = 1 206
b) 83 : 42 - 52 = 512 : 16 - 25 = 32 - 25 = 7
c) 33 . 92 - 52.9 + 18 : 6 = 27 . 81 - 25 . 9 + 3
= 2 187 - 225 + 3 = 1 962 + 3 = 1 965
a) Ta có: \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right)\cdot\sqrt{3}\)
\(=\left(7\cdot4\sqrt{3}+3\cdot3\sqrt{3}-2\cdot2\sqrt{3}\right)\cdot\sqrt{3}\)
\(=33\sqrt{3}\cdot\sqrt{3}\)
=99
b) Ta có: \(\left(12\sqrt{50}-8\sqrt{200}+7\sqrt{450}\right):\sqrt{10}\)
\(=\left(12\cdot5\sqrt{2}-8\cdot10\sqrt{2}+7\cdot15\sqrt{2}\right):\sqrt{10}\)
\(=\dfrac{85\sqrt{2}}{\sqrt{10}}=\dfrac{85}{\sqrt{5}}=17\sqrt{5}\)
c) Ta có: \(\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\sqrt{8}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{4}\cdot2\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+3\sqrt{2}\right)\cdot3\sqrt{6}\)
\(=36-36\sqrt{2}+18\sqrt{3}\)
d) Ta có: \(3\sqrt{15\sqrt{50}}+5\sqrt{24\sqrt{8}}-4\sqrt{12\sqrt{32}}\)
\(=3\cdot\sqrt{75\sqrt{2}}+5\cdot\sqrt{48\sqrt{2}}-4\sqrt{48\sqrt{2}}\)
\(=3\cdot5\sqrt{2}\cdot\sqrt{\sqrt{2}}+4\sqrt{3}\sqrt{\sqrt{2}}\)
\(=15\sqrt{\sqrt{8}}+4\sqrt{\sqrt{18}}\)
a,=\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right).\sqrt{3}\)
\(=28.3+9.3-4.3=99\)
b,\(=\left(60\sqrt{2}-80\sqrt{2}+175\sqrt{2}\right):\sqrt{10}\)
\(=155\sqrt{2}:\sqrt{10}=\dfrac{155}{\sqrt{5}}\)
a, 5 3 + 3 4 + 4 . 2 + 27 - 3 : 4
= 125+170+6
= 301
b, 124 : 3 2 . 7 - 1 10 + 24 : 5 2
= 124:[9.7–(1+24):25]
= 124 : [63–25:25]
= 124:62
= 2
c, 245 - 4 16 : 8 + 2 4 . 3 2 - 9
= 245–4[2+2.27]
= 245–4.45
= 29
d, 375 : 5 3 - 3 8 : 3 6 - 2 . 2 3
= 375 : 125 – (9–16)
= 3–9+16
= 10