Thực hiện các phép tính sau:
a) ab a 2 − b 2 − a 2 b 2 − a 2 với a ≠ ± b ;
b) 1 u − 6 u 2 − 36 u − 18 36 u 2 − 1 với u ≠ 0 và u ≠ ± 1 6 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{a-1}{a+1}+\dfrac{3-a}{a+1}\)
\(=\dfrac{a-1+3-a}{a+1}\)
\(=\dfrac{2}{a+1}\)
b) \(\dfrac{b}{a-b}+\dfrac{a}{b-a}\)
\(=\dfrac{b}{a-b}+\dfrac{-a}{a-b}\)
\(=\dfrac{b-a}{a-b}\)
\(=-1\)
c) \(\dfrac{\left(a+b\right)^2}{ab}-\dfrac{\left(a-b\right)^2}{ab}\)
\(=\dfrac{\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)+\left(a-b\right)\right]}{ab}\)
\(=\dfrac{4ab}{ab}\)
\(=4\)
Câu 3:
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
`a, a/(a-3) - 3/(a+3) = (a(a+3) - 3(a-3))/(a^2-9)`
`= (a^2+9)/(a^2-9)`
`b, 1/(2x) + 2/x^2 = x/(2x^2) + 4/(2x^2) = (x+4)/(2x^2)`
`c, 4/(x^2-1) - 2/(x^2+x) = (4x)/(x(x-1)(x+1)) - (2(x-1))/(x(x+1)(x-1))`
`= (2x+2)/(x(x-1)(x+1)`
`= 2/(x(x-1))`
uses crt;
var a,b:integer;
begin
clrscr;
readln(a,b);
writeln(a div b);
writeln(a mod b);
readln;
end.
Lời giải:
$10+2.4^2=10+2.16=10+32=42$
Đáp án A
$50-4.3^2=50-4.9=50-36=14$
Đáp án A.
Trả lời:
Bài 4:
b, B = ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 )
= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1
= x8 - 1
Thay x = 2 vào biểu thức B, ta có:
28 - 1 = 255
c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 )
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7 + 1
Thay x = 2 vào biểu thức C, ta có:
27 + 1 = 129
d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 )
= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x
= x
Thay x = - 5 vào biểu thức D, ta có:
D = - 5
Bài 5:
a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )
= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4
= x4 - y4
Thay x = 2; y = - 1/2 vào biểu thức A, ta có:
A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16
b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 )
= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5
= a5 + a4b - ab4 - b5
Thay a = 3; b = - 2 vào biểu thức B, ta có:
B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65
c, ( x2 - 2xy + 2y2 ) ( x2 + y2 ) + 2x3y - 3x2y2 + 2xy3
= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y2 + 2xy3
= x4 + 2y4
Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:
( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16
Câu 1:
1: Ta có: \(16\sqrt{9}-9\sqrt{16}\)
\(=16\cdot3-9\cdot4\)
\(=48-36=12\)
2:
a) Thay x=2 và y=8 vào hàm số \(y=a\cdot x^2\), ta được:
\(a\cdot2^2=8\)
\(\Leftrightarrow4a=8\)
hay a=2
Vậy: a=2
\(=\left(a^3+b^3\right)\left[a^6-\left(ab\right)^3+b^6\right]\)
\(=a^9-a^6b^3+a^3b^6+a^6b^3-a^3b^6+b^9\)
\(=\left(-a^6b^3+a^6b^3\right)+\left(a^3b^6-a^3b^6\right)+a^9+b^9\)
\(=a^9+b^9\)
\(\left(a+b\right)\left(a^2-ab+b^2\right)\left[a^6-\left(ab\right)^3+b^6\right]\)
\(=\left(a^3+b^3\right)\left(a^6-a^3b^3+b^6\right)\)
\(=a^9+b^9\)
a) ab a 2 − b 2 − a 2 b 2 − a 2 = a a − b
b) 1 u − 6 u 2 − 36 u − 18 36 u 2 − 1 = 1 − 6 u u ( 1 + 6 u )