Chứng minh rằng:
1 < a a + b + b b + c + c c + a < 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7\)https://scontent.fhph1-1.fna.fbcdn.net/v/t34.0-12/19987311_122536408488931_1351154453_n.jpg?oh=553755e5363013e1853ab6f5ed63a600&oe=59BF5CA7
Ấn vào linh đấy ế
Ta có a² + \(\sqrt{a}\) + \(\sqrt{a}\) ≥ 3a ( 1 )
b² + \(\sqrt{b}\) + \(\sqrt{b}\) ≥ 3b ( 2 )
c² + \(\sqrt{c}\) + \(\sqrt{c}\) ≥ 3c ( 3 )
Cộng từng vế ( 1 ) ( 2 ) ( 3 ) cho ta
a² + b² + c² + 2 ( \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) ) ≥ 3 ( a + b + c ) = 9
2 ( \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)) ≥ 9 - ( a² + b² + c² )
2 ( \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) ) ≥ 9 - ( a + b + c )² + 2 (ab + bc + ca) = 2 (ab + bc + ca)
Vậy\(\sqrt{a}+\sqrt{b}+\sqrt{c}\) ≥ ab + bc + ca
Dấu bằng xãy ra khi và chỉ khi a = b = c = 1
Vậy......
ta có
a<b<c=>3a<a+b+c
d<m<n=>3d<d+m+n
=>3a+3d<a+b+c+d+m+n
=>3a+3a/a+b+c+d+m+n<a+b+c+m+n+d/a+b+c+d+m+n
=>3(a+d)/a+b+c+d+m+n)<1
=>a+d/a+b+c+d+m+n<1/3 (đpcm)
copy
a<b<c<d<m<n =>a+b+c+d+m+n>a+b+a+b+a+b=3(a+b)
\(\Rightarrow\frac{a+b}{a+b+c+d+m+n}<\frac{a+b}{3\left(a+b\right)}=\frac{1}{3}\)
=>đpcm
do a<b<c<d<m<n
=>a+b<c+d
a+b<m+n
=>a+b+a+b+a+b<a+b+c+d+m+n
=>a+b+a+b+a+b/a+b+c+d+m+n<a+b+c+d+m+n/a+b+c+d+m+n
<=>3(a+b)/a+b+c+m+d+n<1
=>a+b/a+b+c+d+m+b<1/3 (đpcm)
Ta có: 1<a<b+c<a+1
=>b+c<a+1
Mà b<c
=>b+b<b+c<a+1
=>2.b<a+1
Mà 1<a
=>2.b<a+a<a+a
=>2.b<2.a
=>b<a
=>1:b>1:a
=>1/b>1/a
=>ĐPCM
Ta có: 1<a ; a<b+c ; b+c<a+1 ; b<c
vì 1<a nên 1/a<a/a hay 1/a<1(1)
Vì a<b+c mà b+c<a+1 nên b+c<1 mà b<c nên b<1 nên 1/b>1(2)
Từ (1);(2) =>1/a<1<1/b
Vậy 1/b>1/a
không chắc nhé bạn hiền
+) Chứng minh:
Ta có:
+) Chứng minh:
Ta có:
Vậy