Cho đồ thị hàm số và đường thẳng Tìm số giao điểm của đồ thị hàm số (C) và đường thẳng d?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Để (d)//y=-3x+2 thì m-1=-3
=>m=-2
c:
PTHĐGĐ là:
(m-1)x-4=x-7
=>(m-2)x=-3
Để hai đường cắt nhau tại một điểm nằm bên trái trục tung thì m-1<>1 và -3/(m-2)<0
=>m<>2 và m-2>0
=>m>2

Gọi A là điểm tại (P) có hoành độ bằng 1 \(\Rightarrow y_A=x_A^2=1\Rightarrow A\left(1;1\right)\)
Gọi B là điểm tại d có hoành độ \(x=-3\Rightarrow y_B=-x_B+2=-1\Rightarrow B\left(-3;-1\right)\)
Gọi đường thẳng qua A và B có dạng: \(y=ax+b\) (1)
Thay tọa độ A và B vào (1) ta được:
\(\left\{{}\begin{matrix}a+b=1\\-3a+b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{1}{2}\end{matrix}\right.\)
Vậy hàm số cần tìm là: \(y=\dfrac{1}{2}x+\dfrac{1}{2}\)

b: PTHĐGĐ là:
1/2x^2-x-4=0
=>x^2-2x-8=0
=>(x-4)(x+2)=0
=>x=4 hoặc x=-2
=>y=8 hoặc y=2
a:

2) Để (d)//(1) thì \(\left\{{}\begin{matrix}2m-1=2\\-5m\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m=3\\m\ne\dfrac{-3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne-\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow m=\dfrac{3}{2}\)
Vậy: Khi \(m=\dfrac{3}{2}\) thì (d)//(1)

a) Khi m =2 thì y = 3x - 1
(Bạn tự vẽ tiếp)
b) Để \((d)//(d_{1})\) thì \(\begin{cases} 2m-1=-3\\ -3m+5\neq2 \end{cases} \) ⇔ \(\begin{cases} m=-1\\ m\neq1 \end{cases} \) ⇔ \(m=-1\)
c)
Để \((d) ⋂ (d1)\) thì \(2m-1\neq-3 \) ⇔ \(m\neq-1\)
Giao điểm của 2 đường thẳng thuộc trục tung => x=0
Khi đó, ta có: \(y=-3.0+2=2\)
⇒ Điểm \((0;2)\) cũng thuộc đường thẳng (d)
⇒ \(2=(2m-1).0-3m+5\) ⇔ \(m=1\) (TM)
Chọn A.
Phương trình hoành độ giao điểm:
Vậy số giao điểm là 2.