Các giá trị của tham số m để hàm số y = x 3 - 3 m x 2 - 2 x - m nghịch biến trên khoảng (0;1) là
A. m ≥ 2
B. m ≤ - 2
C. m ≤ 0
D. m ≥ 1 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)
Hàm nghịch biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)
\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)
4.
\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)
Hàm đồng biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)
\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)
tròi oi a viết chữ xấu wá đi à, đọc bài của a mà đau mắt wá
Đáp án B
Phương pháp:
Hàm số y = f(x) nghịch biến trên (-∞;+∞) khi và chỉ khi f'(x) ≤ 0, ∀ x ∈ (-∞;+∞), f'(x) = 0 tại hữu hạn điểm.
Cách giải:
Hàm số đã cho nghịch biến trên khoảng (-∞;+∞)
Chọn B
Phương pháp: Sử dụng đạo hàm của hàm hợp để tính đạo hàm.
\(y'=-x^2-2\left(m-2\right)x+m-2\)
Hàm nghịch biến trên TXĐ khi và chỉ khi \(y'\le0;\forall x\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-1< 0\left(đúng\right)\\\Delta'=\left(m-2\right)^2+m-2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left(m-2\right)\left(m-1\right)\le0\)
\(\Leftrightarrow1\le m\le2\)
Đáp án D
Xét hàm số y = x 3 - 3 m x 2 - 2 x - m trên khoảng (0;1) có y ' = 3 x 2 - 6 m x - 2
Hàm số đã cho liên tục và nghịch biến trên khoảng (0;1) khi và chỉ khi y ' ≤ 0 , ∀ x ∈ 0 ; 1
Khi đó 3 x 2 - 6 m x - 2 ≤ 0 ; ∀ x ∈ 0 ; 1 ⇔ 6 m ≥ 3 x 2 - 2 x ; ∀ x ∈ 0 ; 1 ⇔ 6 m ≥ m a x 0 ; 1 3 x 2 - 2 x
Xét hàm số f x = 3 x 2 - 2 x trên [0;1], ta có f ' x = 3 + 2 x 2 > 0 , ∀ x ∈ 0 ; 1 suy ra f(x) là hàm số đồng biến trên [0;1].
Do đó m a x 0 ; 1 f x = f 1 = 1 . Khi đó 6 m ≥ 1 ⇔ m ≥ 1 6 .