K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

?????????????????????????????

21 tháng 1 2017

Xin lỗi nha. Mk mún giúp lắm nhưng mk mới học lp 5 thui nên đọc đề ko hỉu gì hết đó.

21 tháng 1 2017

dễ thì quá dễ cơ mà dài,ngại làm ;(

Câu 3 và câu 4 thì tớ làm rồi nhé!

Câu 7:

+) Với p = 2 => p + 2 = 2 + 2 = 4 (là hợp số)

=> p = 2 (loại)

+) Với p = 3 => p + 2 = 3 + 2 = 5 (là số nguyên tố)

=> p + 10 = 3 + 10 = 13 (là số nguyên tố)

+) Với p > 3; p là số nguyên tố thì p có dạng là 3k + 1 hoặc 3k + 2

-) p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 = 3 . (k + 1) \(⋮\) 3 (là hợp số)

=> p = 3k + 1 (loại)

-) p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 = 3 . (k + 4) \(⋮\) 3 (là hợp số)

=> p = 3k + 2 (loại)

=> p chỉ có thể bằng 3

Vậy p = 3 thì p + 2 và p + 10 là số nguyên tố.

16 tháng 11 2016

Mấy bạn làm hộ mình nha , bài khó quá không biết làm thế nào nữa.Xin trân thành cảm ơn nếu các bạn làm chi tiết.

17 tháng 4 2017

Vì số chính phương chia 3 dư 1 hoặc 0

Do đó các cặp số dư khi chia lần lượt a2 và b2 cho 3 là

(0;0) (0;1) (1;0) (1;1)

Vì a2+b2chia hết 3 nên ta nhận cặp (0;0) => a,b đều chia hết 3

9 tháng 7 2016

1) B = 33 + 34 + 35 + ... + 361 + 362 ( có 60 số, 60 chia hết cho 3)

B = (3^3 + 3^4 + 3^5) + (3^6 + 3^7 + 3^8) + ... + (3^60 + 3^61 + 3^62)

B = 3^3.(1 + 3 + 3^2) + 3^6.(1 + 3 + 3^2) + ... + 3^60.(1 + 3 + 3^2)

B = 3^3.13 + 3^6.13 + ... + 3^60.13

B = 13.(3^3 + 3^6 + ... + 3^60) chia hết cho 13

=> số dư khi chia B cho 13 là 0

2) Do 4a + 3b chia hết cho 7

=> 2.(4a + 3b) chia hết cho 7

=> 8a + 6b chia hết cho 7

=> 7a + a + 7b - b chia hết cho 7

Do 7a + 7b chia hết cho 7 => a - b chia hết cho 7

Ủng hộ mk nha ☆_☆★_★^_-

9 tháng 7 2016

B = 33 + 34 + 35 + ... + 361 + 362 ( có 60 số, 60 chia hết cho 3)

B = (3^3 + 3^4 + 3^5) + (3^6 + 3^7 + 3^8) + ... + (3^60 + 3^61 + 3^62)

B = 3^3.(1 + 3 + 3^2) + 3^6.(1 + 3 + 3^2) + ... + 3^60.(1 + 3 + 3^2)

B = 3^3.13 + 3^6.13 + ... + 3^60.13

B = 13.(3^3 + 3^6 + ... + 3^60) chia hết cho 13

=> số dư khi chia B cho 13 là 0

2) Do 4a + 3b chia hết cho 7

=> 2.(4a + 3b) chia hết cho 7

=> 8a + 6b chia hết cho 7

=> 7a + a + 7b - b chia hết cho 7

Do 7a + 7b chia hết cho 7 => a - b chia hết cho 7

4 tháng 12 2017

\(A=2^1+2^2+2^3+2^4+....+2^{2009}+2^{2010}\)

\(\Rightarrow A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{2009}+2^{2010}\right)\)

\(\Rightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{2009}\left(1+2\right)\)

\(\Rightarrow A=2.3+2^3.3+....+2^{2009}.3\)

\(\Rightarrow A=3\left(2+2^3+....+2^{2009}\right)⋮3\left(dpcm\right)\)

8 tháng 10 2017

bài này làm thế nào 

hiền k hộ ta

10 tháng 3 2020

A = 31 + 32 + 33 + ....... + 32012

A = ( 31 + 32 + 33) + ( 34 + 35 + 36 ) + ....... + ( 32010 + 32011 + 32012)

A = 1 . ( 31 + 32 + 33) + 34 . ( 31 + 32 + 33) + ......... + 32010 .  ( 31 + 32 + 33)

A = 1 . 39 + 34 . 39 + ........ + 32010 . 39

A = 39 . ( 1 + 34 + .......... + 32020 \(⋮\)13\(\rightarrowĐPCM\)

# HOK TỐT #

A = 31 + 32 + 33 +34 + 35 + 36 + . . . + 32010 + 32011 + 32012

A = ( 31 + 32 + 33 ) + ( 34 + 35 + 36 )+ . . . + ( 32010 + 32011 + 32012 )

A = 31 (1 + 3 + 32 ) + 34  (1 + 3 + 32 ) + . . . + 32010  (1 + 3 + 32 )

A = 31 . 13 + 34 . 13 + . . . + 32010 . 13

A = 13 .( 31 + 34 + . . . + 32010 ) \(⋮\)13 ( ĐPCM)

HOK TỐT

10 tháng 3 2020

A = 31 + 32 + 33 + ..... + 32012

A = ( 31 + 32 + 33)  + ......... + ( 32010 + 32011 + 32012)

A = 1. ( 31 + 32 + 33) + ........ + 32010. ( 31 + 32 + 33

A = 1 . 39 + ....... + 32010 . 39

A = 39 . ( 1 + ...... + 32010\(⋮13\rightarrowĐPCM\)

# HOK TỐT #