K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2019

Kẻ đường cao AH

Ta có: SAMB = 0.5.BM.AH

SAMC = 0.5.CM.AH

Mà BM = CM (gt)

Þ SAMB = SAMC (ĐPCM)

16 tháng 12 2021

vẽ đường cao AH chung của tam giác AMB và AMC 

SAMB=\(\dfrac{1}{2}\)BM.AH

SAMC=\(\dfrac{1}{2}\)CM.AH

Vì AM là đường trung tuyến nên BM=MC

Do đó:SAMC=SAMB

 

 ( cái đường cao AH vuông góc với BC ă)

S
4 tháng 3 2023

câu 2 : 

a) có phải là chứng minh AM ⊥ BC không

xét ΔAMB và ΔAMC, ta có : 

AB = AC (2 cạnh bên của ΔABC cân tại A)

MB = MC (AM là đường trung tuyến của cạnh BC)

AM là cạnh chung

=> ΔAMB = ΔAMC (c.c.c)

=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)

=> AM ⊥ BC

S
4 tháng 3 2023

loading...

10 tháng 3 2023

Đề có sai không bạn , nếu `Delta ABC` là tam giác thường thôi thì không cm đc đâu ạ 

1 tháng 5 2019

Kẻ đường cao AH.

Ta có:

Giải bài 18 trang 121 Toán 8 Tập 1 | Giải bài tập Toán 8

Mà BM = CM (vì AM là trung tuyến)

⇒ SAMB = SAMC (đpcm).

21 tháng 8 2019

Lam truoc cau a nhe,toi roi

a.Vi tu giac AFME co 3 goc vuong va 2 duong cheo vuong goc voi nhau nen AFDE la hinh vuong.

Goi giao diem giua 2 duong cheo AM va EF do la Q 

Suy ra:AQ=FQ nen tam giac AQF la tam giac vuong can hay \(\widehat{AQF}=45^0\left(1\right)\)

Tu giac QFKM co 3 goc vuong va MQ=FQ nen QFKM la hinh vuong.

Suy ra:FK=MK

Ta co:\(FK^2=MK.KC\Rightarrow FK=KC\)

Nen tam giac FKC la tam giac vuong can hay \(\widehat{C}=45^0\left(2\right)\)

Tu (1) va (2) suy ra:AM=MC

Hay AM la duong trung tuyen cua tam giac ABC.

Xét ΔABC có 

AM là đường trung tuyến

AM là đường phân giác

Do đó: ΔABC cân tại A

16 tháng 4 2022

\(\text{Xét }\Delta ABC\text{ có:}\)

\(\left\{{}\begin{matrix}AM\text{ là đường phân giác(gt)}\\AM\text{ là đường trung tuyến(gt)}\end{matrix}\right.\)

\(\Rightarrow\Delta ABC\text{ cân tại A}\)

 

#\(N\)

`a,` Vì Tam giác `ABC` cân tại `A -> AB = AC, `\(\widehat{B}=\widehat{C}\) 

`AM` là đường trung tuyến Tam giác `ABC -> BM = MC`

Xét Tam giác `ABM` và Tam giác `ACM` có:

`AB = AC`

\(\widehat{B}=\widehat{C}\)

`BM = MC`

`->` Tam giác `ABM =` Tam giác `ACM (c-g-c)`

`->`\(\widehat{BAM}=\widehat{CAM}\) `(2` góc tương ứng `)`

`-> AM` là phân giác của \(\widehat{BAC}\) 

 

P
Phong
CTVHS
28 tháng 2 2023

Xét tam giác \(\Delta ABM\) và \(\Delta ACM\)

\(AB=AC\left(gt\right)\)

\(\widehat{ABM}=\widehat{ACM}\left(gt\right)\)

\(AM\) chung

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.g.c\right)\)

Từ tam giác bằng nhau trên suy ra:

\(\widehat{BAM}=\widehat{CAM}\) nên \(AM\) là phân giác \(\widehat{BAC}\)

Là phân giác của \(\Delta ABC\)