Cho hai elíp Gọi Lập phương trình đường tròn ngoại tiếp hình chữ nhật ABCD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, y \(\times\) \(\dfrac{4}{3}\) = \(\dfrac{16}{9}\)
y = \(\dfrac{16}{9}\) : \(\dfrac{4}{3}\)
y = \(\dfrac{4}{3}\)
b, ( y - \(\dfrac{1}{2}\)) + 0,5 = \(\dfrac{3}{4}\)
y - 0,5 + 0,5 = \(\dfrac{3}{4}\)
y = \(\dfrac{3}{4}\)
c, \(\dfrac{4}{5}-\dfrac{2}{5}y\) = 0,2
0,8 - 0,4y = 0,2
0,4y = 0,8 - 0,2
0,4y = 0,6
y = 1,5
d, (y + \(\dfrac{3}{4}\)) \(\times\) \(\dfrac{5}{7}\) = \(\dfrac{10}{9}\)
y + \(\dfrac{3}{4}\) = \(\dfrac{10}{9}\) : \(\dfrac{5}{7}\)
y + \(\dfrac{3}{4}\) = \(\dfrac{14}{9}\)
y = \(\dfrac{14}{9}\) - \(\dfrac{3}{4}\)
y = \(\dfrac{29}{36}\)
e, y : \(\dfrac{5}{4}\) = \(\dfrac{9}{5}\) + \(\dfrac{1}{2}\)
y : \(\dfrac{5}{4}\) = \(\dfrac{23}{10}\)
y = \(\dfrac{23}{10}\)
y = \(\dfrac{23}{8}\)
f, y \(\times\) \(\dfrac{1}{2}\) + \(\dfrac{3}{2}\) \(\times\) y = \(\dfrac{4}{5}\)
y \(\times\) ( \(\dfrac{1}{2}+\dfrac{3}{2}\)) = \(\dfrac{4}{5}\)
2y = \(\dfrac{4}{5}\)
y = \(\dfrac{2}{5}\)

Câu 1:
|a| là số dương ⇒ b là số dương.
Mà a trái dấu b ⇒ a là số âm.
Câu 3:
a)1020=10010>9010.
b)0,320=0,0910< 0,110.
c)\(\left(-5\right)^{30}=\left(-125\right)^{10}>\left(-243\right)^{10}=\left(-3\right)^{50}\)
d)\(64^8=\left(2^6\right)^8=2^{48}\)
\(16^{12}=\left(2^4\right)^{12}\)\(=2^{48}\)
⇒\(64^8=16^{12}\)

Gọi \(M\left(x;y\right)\) là 1 điểm bất kì thuộc (E) \(\Rightarrow\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\) (1)
Gọi \(M'\left(x';y'\right)\) là ảnh của M qua phép tịnh tiến nói trên \(\Rightarrow M'\in\left(E'\right)\)
\(\left\{{}\begin{matrix}x'=x+2\\y'=y+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=x'-2\\y=y'-1\end{matrix}\right.\)
Thế vào (1):
\(\dfrac{\left(x'-2\right)^2}{9}+\dfrac{\left(y'-1\right)^2}{4}=1\)
Hay pt (E') có dạng: \(\dfrac{\left(x-2\right)^2}{9}+\dfrac{\left(y-1\right)^2}{4}=1\)

Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1

a)
\(A=x^2-x+1=x^2-2.x.\frac{1}{2}+(\frac{1}{2})^2+\frac{3}{4}\)
\(=(x-\frac{1}{2})^2+\frac{3}{4}\)
Vì $(x-\frac{1}{2})^2\geq 0, \forall x$
$\Rightarrow A=(x-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$
Vậy GTNN của biểu thức là $\frac{3}{4}$. Giá trị này đạt được khi $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$
b)
\(B=4x^2+y^2-4x-2y+3\)
$=(4x^2-4x+1)+(y^2-2y+1)+1$
$=(2x-1)^2+(y-1)^2+1$
$\geq 0+0+1=1$
Vậy GTNN của $B$ là $1$. Giá trị này đạt được khi \(\left\{\begin{matrix} (2x-1)^2=0\\ (y-1)^2=0\end{matrix}\right.\Leftrightarrow x=\frac{1}{2}; y=1\)
c)
\(C=x^2+x+1=x^2+2.x.\frac{1}{2}+(\frac{1}{2})^2+\frac{3}{4}\)
\(=(x+\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}=\frac{3}{4}\)
Vậy GTNN của $C$ là $\frac{3}{4}$. Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}$
Đáp án A
Xét hệ:
Đường tròn ngoại tiếp hình chữ nhật ABCD có tâm O và bán kính
Vậy phương trình đường tròn cần tìm là: