K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2017

DD
27 tháng 6 2021

a) \(x\)là số hữu tỉ khi \(a-17\ne0\Leftrightarrow a\ne17\).

b) \(x\)là số hữu tỉ dương khi \(\frac{13}{a-17}>0\Leftrightarrow a-17>0\Leftrightarrow a>17\).

c)  \(x\)là số hữu tỉ âm khi \(\frac{13}{a-17}< 0\Leftrightarrow a-17< 0\Leftrightarrow a< 17\).

d) \(x=-1\Rightarrow\frac{13}{a-17}=-1\Rightarrow13=17-a\Leftrightarrow a=4\).

e) \(x>1\Rightarrow\frac{13}{a-17}>1\Leftrightarrow\frac{13-a+17}{a-17}>0\Leftrightarrow\frac{30-a}{a-17}>0\Leftrightarrow17< a< 30\).

f) ​\(0< x< 1\Rightarrow0< \frac{13}{a-17}< 1\Leftrightarrow a-17>13\Leftrightarrow a>30\).

DD
27 tháng 6 2021

a) \(x\)là số hữu tỉ khi \(a-17\ne0\Leftrightarrow a\ne17\).

b) \(x\)là số hữu tỉ dương khi \(\frac{13}{a-17}>0\Leftrightarrow a-17>0\Leftrightarrow a>17\).

c)  \(x\)là số hữu tỉ âm khi \(\frac{13}{a-17}< 0\Leftrightarrow a-17< 0\Leftrightarrow a< 17\).

d) \(x=-1\Rightarrow\frac{13}{a-17}=-1\Rightarrow13=17-a\Leftrightarrow a=4\).

e) \(x>1\Rightarrow\frac{13}{a-17}>1\Leftrightarrow\frac{13-a+17}{a-17}>0\Leftrightarrow\frac{30-a}{a-17}>0\Leftrightarrow17< a< 30\).

f) ​\(0< x< 1\Rightarrow0< \frac{13}{a-17}< 1\Leftrightarrow a-17>13\Leftrightarrow a>30\).

27 tháng 6 2021

mn ơi giúp mik vs!!!

8 tháng 9 2017

hu hu hu giúp mình với!!!khocroikhocroikhocroi

22 tháng 10 2018

bạn có thể cho mình tham khảo câu a được ko

Cho số a=\(\frac{9}{x-5}\) với x thuộc Z . Hãy xác định x để cho:a là 1 số hữu tỉ <=>...................................................................................................a là 1 số hữu tỉ dương <=>......................................................................................a là số hữu tỉ âm <=>................................................................................................a = -1...
Đọc tiếp

Cho số a=\(\frac{9}{x-5}\) với x thuộc Z . Hãy xác định x để cho:

  1. a là 1 số hữu tỉ <=>...................................................................................................
  2. a là 1 số hữu tỉ dương <=>......................................................................................
  3. a là số hữu tỉ âm <=>................................................................................................
  4. a = -1 <=>...................................................................................................................
  5. a = 1 <=>....................................................................................................................
  6. a > 1 <=>....................................................................................................................
  7. a < -1 <=>...................................................................................................................
  8. o < a < 1 <=>..............................................................................................................
2
3 tháng 9 2016

1) Để a là 1 số hữu tỉ thì x - 5 khác 0 => x khác 5

2) Để a là 1 số hữu tỉ dương thì x - 5 dương => x - 5 > 0 => x > 5

3) Để a là 1 số hữu tỉ âm thì x - 5 âm => x - 5 < 0 => x < 5

4) Để a = -1 thì x - 5 = -9 => x = -4

5) Để a = 1 thì x - 5 = 9 => x = 14

6) Để a > 1 thì 0 < x - 5 < 9 => 5 < x < 14

7) Để a < -1 thì x - 5 > -9 => x > -4

8) Để 0 < a < 1 thì x - 5 > 9 => x > 14

3 tháng 9 2016

1) x khác 5

2) x > 5

3) x < 5

4) -4

5) 14

6) a < 14

7) a > -4

8) -4 < a < 14

29 tháng 6 2017

B1: Ta có :a/b < c/d

=>ad/bd < bc/ba

=>ad < bc

13 tháng 10 2017

Đề bài đúng mà bạn..có sai đâu...mình tính vẫn ra được kết quả cuối cùng

11 tháng 10 2017

Viết đề............

bài 2 đề sai cmnr

Bài 1: Cho hàm số: f(x) = ax2 – 2(a + 1)x + a + 2 ( a ≠ 0) a) Chứng tỏ rằng phương trình f(x) = 0 luôn có nghiệm thực. Tính các nghiệm đó. b) Tính tổng S và tích P của các nghiệm của phương trình f(x) = 0. Khảo sát sự biến thiên và vẽ đồ thị hàm số của S và P theo a. Bài 2: Cho hàm số: y= \(-\dfrac{1}{3}\)x3 + (a − 1)x2 + (a + 3)x − 4 a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) của hàm...
Đọc tiếp

Bài 1: Cho hàm số:

f(x) = ax2 – 2(a + 1)x + a + 2 ( a ≠ 0)

a) Chứng tỏ rằng phương trình f(x) = 0 luôn có nghiệm thực. Tính các nghiệm đó.

b) Tính tổng S và tích P của các nghiệm của phương trình f(x) = 0. Khảo sát sự biến thiên và vẽ đồ thị hàm số của S và P theo a.

Bài 2:

Cho hàm số: y= \(-\dfrac{1}{3}\)x3 + (a − 1)x2 + (a + 3)x − 4

a) Khảo sát sự biến thiên và vẽ đồ thị hàm số (C) của hàm số khi a = 0

b) Tính diện tích hình phẳng giới hạn bởi (C) và đường thẳng y = 0, x = -1, x = 1

Bài 3:

Cho hàm số : y = x3 + ax2 + bx + 1

a) Tìm a và b để đồ thị của hàm số đi qua hai điểm A(1, 2) và B(-2, -1)

b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với các giá trị tìm được của a và b.

c) Tính thể tích vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường thẳng y = 0, x = 0, x = 1 và đồ thị (C) quanh trục hoành.


0