tìm x
4 mũ 2 nhân x - 6 = 1
giúp mình với pls
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=x^4+2x^2+1-x^2=\left(x^2+1\right)^2-x^2\)
\(P=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(\Rightarrow\) P luôn có ít nhất 2 ước số là \(x^2-x+1\) và \(x^2+x+1\)
Do \(x^2+x+1\ge x^2-x+1\) nên P là SNT khi và chỉ khi \(x^2-x+1=1\) đồng thời \(x^2+x+1\) là SNT
\(x^2-x+1=1\Leftrightarrow x^2-x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
- Với \(x=0\Rightarrow x^2+x+1=1\) ko phải SNT (loại)
- Với \(x=1\Rightarrow x^2+x+1=3\) là SNT (t/m)
Vậy \(x=1\)
a) \(=x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)
\(=\left(x-1\right)^2\left(x^2+x+1\right)\)
b) \(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)
c) Đổi đề: \(a^2x+a^2y-7x-7y\)
\(=a^2\left(x+y\right)-7\left(x+y\right)=\left(x+y\right)\left(a^2-7\right)\)
d) \(=x^2\left(a-b\right)+y\left(a-b\right)=\left(a-b\right)\left(x^2+y\right)\)
e) \(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)
\(=\left(x+1\right)^2\left(x^2-x+1\right)\)
g) \(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)
h) \(=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(x-y+1\right)\)
i) \(=\left(x+1\right)^2-4=\left(x+1-2\right)\left(x+1+2\right)=\left(x-1\right)\left(x+3\right)\)
a\(x^3\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^3-1\right)\)
b)\(=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)
d)\(=a\left(x^2+y\right)-b\left(x^2+y\right)=\left(x^2+y\right)\left(x-b\right)\)
e)\(=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)
g)\(=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\)
h)\(=\left(x-y\right)\left(x+y\right)-\left(x-y\right)=\left(x-y\right)\left(x+y-1\right)\)
i)\(=\left(x-1\right)^2-4=\left(x-1-2\right)\left(x-1+2\right)=\left(x-3\right)\left(x+1\right)\)
Lời giải:
$x=|-2|=2$
Khi đó: $2x-3y+4z^2=2.2-3(-1)+4(-1)^2=11$
A<1/1*2+1/2*3+...+1/2021*2022
=>A<1-1/2+1/2-1/3+...+1/2021-1/2022<1
\(\left(\frac{2}{5}\right)^2+5\frac{1}{2}:\left(4,5-2\right)-0,2\)
\(=\frac{4}{25}+\frac{11}{2}:\frac{5}{2}-\frac{1}{5}\)
\(=\frac{4}{25}+\frac{11}{2}.\frac{2}{5}-\frac{1}{5}\)
\(=\frac{4}{25}+\frac{11}{5}-\frac{1}{5}\)
\(=\frac{4}{25}+\frac{55}{25}-\frac{5}{25}\)
\(=\frac{54}{25}\)
a) Đề sai
b) \(\left|x+\frac{4}{5}\right|=\frac{1}{7}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{4}{5}=\frac{1}{7}\\x+\frac{4}{5}=\frac{-1}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{7}-\frac{4}{5}\\x=\frac{-1}{7}-\frac{4}{5}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{35}-\frac{28}{35}\\x=\frac{-5}{35}-\frac{28}{35}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{-23}{35}\\x=\frac{-33}{35}\end{cases}}}\)
Vậy \(x=\frac{-23}{35}\)hoặc \(x=\frac{-33}{35}\)
\(\Leftrightarrow\left|3x-2\right|>x+1\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x-2>0\\x+1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\\3x-2>x^2+2x+1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x^2+2x+1-3x+2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x^2-x+3< 0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
\(x-\dfrac{1}{2}=\dfrac{4}{7}\\ x=\dfrac{4}{7}+\dfrac{1}{2}\\ x=\dfrac{15}{14}\\ \dfrac{19}{7}-x=\dfrac{27}{2}-1\\ \dfrac{19}{7}-x=\dfrac{25}{2}\\ x=\dfrac{19}{7}-\dfrac{25}{2}\\ x=-\dfrac{137}{14}\)
.
42 . (x-6)=1
16(x-6)=1
x-6=1:16
x-6=1/16
x=1/16+6
x=97/16