Giải các phương trình sau: (3x + 4)(5 – x) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: ( x - 5 )( 3 - 2x )( 3x + 4 ) = 0
Vậy phương trình đã cho có tập nghiệm là S = { - 4/3; 3/2; 5 }.
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(\sqrt[]{3x+7}-5< 0\)
\(\Leftrightarrow\sqrt[]{3x+7}< 5\)
\(\Leftrightarrow3x+7\ge0\cap3x+7< 25\)
\(\Leftrightarrow x\ge-\dfrac{7}{3}\cap x< 6\)
\(\Leftrightarrow-\dfrac{7}{3}\le x< 6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. 3x( x - 2 ) - ( x - 2 ) = 0
<=> ( x-2).(3x-1) = 0 => x = 2 hoặc x = \(\dfrac{1}{3}\)
2. x( x-1 ) ( x2 + x + 1 ) - 4( x - 1 )
<=> ( x - 1 ).( x (x^2 + x + 1 ) - 4 ) = 0
(phần này tui giải được x = 1 thôi còn bên kia giải ko ra nha )
3 \(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\\sqrt{5}x-5y=10\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}y=-1\\x=\sqrt{5}\end{matrix}\right.\)
\(1. 3x^2 - 7x +2=0\)
=>\(Δ=(-7)^2 - 4.3.2\)
\(= 49-24 = 25\)
Vì 25>0 suy ra phương trình có 2 nghiệm phân biệt:
\(x_1\)=\(\dfrac{-\left(-7\right)+\sqrt{25}}{2.3}=\dfrac{7+5}{6}=2\)
\(x_2\)=\(\dfrac{-\left(-7\right)-\sqrt{25}}{2.3}=\dfrac{7-5}{6}=\dfrac{1}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
`3x+7=0`
`<=>3x=-7`
`<=>x=-7/3`
Vậy `S={-7/3}`
______________________
`2x(x-2)+2x(5-3x)=0`
`<=>2x(x-2+5-3x)=0`
`<=>2x(3-2x)=0`
`@TH1:2x=0<=>x=0`
`@TH2: 3-2x=0<=>2x=3<=>x=3/2`
Vậy `S={0;3/2}`
3x+7=0
\(\Leftrightarrow3x=-7\Leftrightarrow x=-\dfrac{7}{3}\)
2x(x-2)+2x(5-3x)=0
\(\Leftrightarrow2x\left(x-2+5-3x\right)=0\)
\(\Leftrightarrow2x\left(-2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\-2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-3}{-2}=\dfrac{3}{2}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(2x-5\right)^3-\left(3x-4\right)^3+\left(x+1\right)^3=0\)
\(\Leftrightarrow\left(2x-5-3x+4\right)\left[\left(2x-5\right)^2+\left(2x-5\right)\left(3x-4\right)+\left(3x-4\right)^2\right]+\left(x+1\right)^3=0\)
\(\Leftrightarrow-\left(x+1\right)\left[\left(2x-5\right)^2+\left(2x-5\right)\left(3x-4\right)+\left(3x-4\right)^2\right]+\left(x+1\right)^3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2-\left(2x-5\right)^2-\left(2x-5\right)\left(3x-4\right)-\left(3x-4\right)^2=0\left(1\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow\left(x+1+2x-5\right)\left(x+1-2x+5\right)-\left(2x-5\right)\left(3x-4\right)-\left(3x-4\right)^2=0\)
\(\Leftrightarrow\left(3x-4\right)\left(6-x-2x+5-3x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-4=0\\-6x+15=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{-5}{2}\end{cases}}}\)
(3x + 4)(5 – x) = 0 ⇔ 3x +4 = 0 hoặc 5 - x = 0 ⇔ 3x = -4 hoặc –x = -5
⇔ x = -4/3 hoặc x = 5
Vậy phương trình có hai nghiệm x = -4/3 và x = 5.