Chứng minh các đẳng thức sau:
a ) 3 2 6 + 2 2 3 − 4 3 2 = 6 6 b ) ( x 6 x + 2 x 3 + 6 x ) : 6 x = 2 1 3 v ó i x > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) a) Biến đổi vế trái thành 32√6+23√6−42√6326+236−426 và làm tiếp.
b) Biến đổi vế trái thành (√6x+13√6x+√6x):√6x(6x+136x+6x):6x và làm tiếp
a) Biến đổi vế trái ta có:
\(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}\)
\(=\frac{3\sqrt{6}}{2}+\frac{2\sqrt{6}}{3}-\frac{4\sqrt{6}}{2}=\frac{9\sqrt{6}+4\sqrt{6}-12\sqrt{6}}{6}=\frac{\sqrt{6}}{6}=VP\)
Vậy đẳng thức trên đc chứng minh
b) Biến đổi vế trái ta có:
\(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right):\sqrt{6x}\)
\(=\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right)\cdot\frac{1}{\sqrt{6x}}\)
\(=x\sqrt{\frac{6}{x}\cdot\frac{1}{6x}}+\sqrt{\frac{2x}{3}\cdot\frac{1}{6x}}+\sqrt{6x}\cdot\frac{1}{\sqrt{6x}}\)
\(=x\sqrt{\frac{1}{x^2}}+\sqrt{\frac{1}{9}}+1=1+\frac{1}{3}+1=2\frac{1}{3}=VP\)
Vậy đẳng thức trên đc chứng minh
a: \(VT=\dfrac{3\sqrt{6}}{2}+\dfrac{2\sqrt{6}}{3}-\dfrac{4\sqrt{6}}{2}\)
\(=\dfrac{-\sqrt{6}}{2}+\dfrac{2\sqrt{6}}{3}=\dfrac{-3\sqrt{6}+4\sqrt{6}}{6}=\dfrac{\sqrt{6}}{6}\)
b: \(VT=\dfrac{\left(\sqrt{6x}+\dfrac{\sqrt{6x}}{3}+\sqrt{6x}\right)}{\sqrt{6x}}\)
\(=1+\dfrac{1}{3}+1=2\dfrac{1}{3}\)
Lời giải:
$\frac{3}{6}=\frac{2}{4}$
$\frac{6}{3}=\frac{4}{2}$
$\frac{3}{2}=\frac{6}{4}$
$\frac{2}{3}=\frac{4}{6}$
a) ( x - 1 )3 + 3x( x - 1 )2 + 3x2( x - 1 ) + x3
= [ ( x - 1 ) + x ) ]3 ( HĐT số 4 )
= [ x - 1 + x ]3
= [ 2x - 1 ]3
=> đpcm
b) ( x2 - 2xy )3 + 3( x2 - 2xy )y2 + 3( x2 - 2xy )y4 + y6
= [ ( x2 - 2xy ) + y2 ]3 ( HĐT số 4 )
= [ x2 - 2xy + y2 ]3
= [ ( x - y )2 ]3
= ( x - y )6
=> đpcm
a) Biến đổi vế trái:
b) Biến đổi vế trái: