Bài 10. Tìm UCLN (2n + 3; 4n + 1) với n là số tự nhiên
Bài 11. Chứng minh rằng : 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 396 : a dư 30 nên a > 30
Theo bài ra ta có :
396 chia a dư 30
=> ( 396 - 30 ) \(⋮\)a => 366 \(⋮\)a
Lại có : 473 chia a dư 23
=> ( 473 - 23 ) \(⋮\)a => 450 \(⋮\)a
Từ (1) và (2) => a \(\in\)ƯC( 366;450)
Ta có : 366 = 2 .3 . 61
450 = 2 . 32 . 52
Khi đó ƯCLN( 366;450 ) = 2 . 3 = 6
=> ƯC( 366;450 ) = Ư(6) = { 1 ;2 ; 3 ; 6 }
Vậy a \(\in\){1;2;3;6}
Gọi số cần tìm là x
Ta có: 2n+3 \(⋮\) x và 4n+3 \(⋮\)x
=> 2n+3 - 4n+3 \(⋮\) x
=> x = 1
Vậy UCLN của 2n+3 và 4n+3 là 1
a)Gọi UCLN(4n+5 và 2n +3) là d
Ta có:
[4n+5]-[2(2n+3)] chia hết d
=>[4n+5]-[4n+6] chia hết d
=>-1 chia hết d
=>d={1;-1}.Vậy UCLN của....
b)Gọi UCLN(3n+7;2n+7) là d
[2(3n+7)]-[3(2n+7)] chia hết d
=>[6n+14]-[6n+21] chia hết d
=>-7 chia hết d
=>d={1;-1;7;-7}.Vậy...
c) tương tự
Gọi d = UCLN(4n+3; 2n+3)
Suy ra 4n+3 chia hết cho d và 2n+3 chia hết cho d.
Rõ ràng d không chia hết cho 2 vì 2n+3 lẻ.
Do đó suy ra 2*(2n+3) - (4n+3) chia hết cho d.
=> 3 chia hết cho d
Vậy d lớn nhất = 3 hay UCLN(4n+3; 2n+3) chỉ có thể bằng 3.