Đường thẳng d có một vectơ pháp tuyến là ( - 4; 0). Trong các vectơ sau, vectơ nào là một vectơ chỉ phương của d?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án A
Đường thẳng d có một vectơ pháp tuyến là n → = ( - 2 ; - 5 ) nên đường thẳng này có 1 VTCP là: n → = 5 ; - 2
Do đường thẳng d và ∆ song song với nhau nên vecto n → = ( 5 ; - 2 ) cũng là VTCP của đường thẳng ∆.

Đáp án A
Do hai đường thẳng vuông góc với nhau thì VTPT của đường thẳng này là VTCP của đường thẳng kia và ngược lại.
Do đường thẳng ∆ vuông góc với đường thẳng (d) nên nhận VTPT của đường thẳng ( d) là VTCP. Do đó: một VTCP của đường thẳng ∆ là ( 2; -1)

Đáp án A
Đường thẳng ( d) có VTCP là u → = ( 3 ; - 4 )
Nên đường thẳng (d) có 1 VTPT là ( 4; 3) .
Do 2 đườg thẳng ∆ và (d) song song với nhau nên chúng có cùng VTPT và cùng VTCP .
Suy ra đường thẳng ∆ có 1 VTPT là (4; 3) .

Chọn C.
Đường thẳng Δ vuông góc với d nhận VTPT của d là VTCP

Đáp án B
Ta có nhận xét:
Hai đường thẳng vuông góc với nhau thì VTPT của đường thẳng này là VTCP của đường thẳng kia và ngược lại.
Do đường thẳng ∆ vuông góc với đường thẳng (d) nên nhận VTCP của đường thẳng (d) là VTPT. Do đó: 1 VTPT của đường thẳng ∆ là ( -2; -3).
Mà hai vectơ (-2; -3) và ( 4; 6) là 2 vectơ cùng phương nên vectơ (4; 6) cũng là VTPT của đường thẳng ∆.

Chọn D
Đường thẳng (d) có VTPT là (2;3) và VTCP là (3; -2)
Do đường thẳng (d) và ∆ vuông góc với nhau nên đường thẳng ∆ nhận VTCP của đường thẳng (d) làm VTPT.
Do đó đường thẳng ∆ có VTPT là (3; -2) .
Chọn D.