Tập nghiệm của bất phương trình | x - 1 | x + 2 < 1 là:
A. S = - ∞ , - 2
B. S = - 1 2 , + ∞
C. S = - ∞ , - 2 ∪ - 1 2 , + ∞
D. S = [ 1 ; + ∞ )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Đáp án B.
TXĐ: x + 2 > 0 1 − x > 0 ⇔ − 2 < x < 1.
Bất phương trình tương đương với:
log 3 x + 2 1 − x ≥ 1 ⇔ x + 2 1 − x ≥ 3 ⇔ x + 2 ≥ 3 − 3 x ⇔ x ≥ 1 4 .
Do đó a = 1 4 ; b = 1 nên
S = 2 2 + 1 3 = 5.
Chọn D
Ta có: (1)
TH1: Nếu x< ½ bpt (1) trở thành: 1-2x ≤ x hay x ≥ 1/3
Kết hợp với điều kiện, ta có: 1/3 ≤ x < ½
TH2: Nếu x ≥ ½ , bpt (1) trở thành: 2x-1 ≤ x hay x ≤ 1
Kết hợp với điều kiện, ta có: ½ ≤ x ≤ 1
Vậy tập nghiệm của bpt là: S= [ 1/3; 1] .Khi đó; P= 1/ 3
2: \(\text{Δ}=1^2-4\cdot\left(-1\right)\cdot\left(-m\right)=1-4m\)
Để bất phương trình vô nghiệm thì \(\left\{{}\begin{matrix}1-4m< 0\\-1< 0\end{matrix}\right.\Leftrightarrow m>\dfrac{1}{4}\)
\(\dfrac{x^2+x+3}{x^2-4}\ge1\Leftrightarrow\dfrac{x^2+x+3}{x^2-4}-1\ge0\)
\(\Leftrightarrow\dfrac{x+7}{x^2-4}\ge0\Rightarrow\left[{}\begin{matrix}-7\le x< -2\\x>2\end{matrix}\right.\)
\(\Rightarrow S\cap\left(-2;2\right)=\varnothing\)
Chọn C