Tìm các số nguyên x, biết:
| 2x + 1 | + 10 - 2x = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 7\(x\).(\(x\) - 10) = 0
\(\left[{}\begin{matrix}7x=0\\x-10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\)
Vậy \(x\in\) {0; 10}
b, 17.(3\(x\) - 6).(2\(x\) - 18) = 0
\(\left[{}\begin{matrix}3x-6=0\\2x-18=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=6\\2x-18=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=6:3\\x=18:2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2\\x=9\end{matrix}\right.\)
a, \(\left(x-1\right).\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
b, \(\left(2x-4\right).\left(3x+9\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-4=0\\3x+9=0\end{matrix}\right.\left[{}\begin{matrix}2x=4\\3x=-9\end{matrix}\right.\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
a) TH1: x-1=0 => x=1
TH2: x+2=0 => x=-2
b) TH1: 2x-4=0 <=> 2x= 4 <=> x=2
TH2: 3x+9=0 <=> 3x=-9 <=> x= -3
a)Để 4-(x+3)=0
=>x+3=0
x=0-3
x=-3
b)Để 9(2x-10)=0
=>2x-10=0
2x=0+10
2x=10
x=10:2
x=5
Ta có x.y = -2.3 = -6. Vì x < 0 < y nên ta có bảng sau:
X | -6 | -1 | -3 | -2 |
Y | 1 | 6 | 2 | 3 |
a, \(\dfrac{3}{x-2}\left(ĐKXĐ:x\ne2\right)\)
Để A nguyên thì \(3⋮x-2\)hay \(x-2\inƯ\left(3\right)\)
Xét bảng :
Ư(3) | x-2 | x |
3 | 3 | 5 |
-3 | -3 | -1 |
1 | 1 | 3 |
-1 | -1 | 1 |
Vậy để A nguyên thì \(x\in\left\{-1;1;3;5\right\}\)
b,\(B=-\dfrac{11}{2x-3}\left(ĐKXĐ:x\ne\dfrac{3}{2}\right)\)
Để B nguyên thì
\(2x-3\inƯ\left(-11\right)\)( thuộc Ư(11) cũng được nhé như nhau cả )
Xét bảng :
2x-3 | x |
11 | 7 |
-11 | -4 |
1 | 2 |
-1 | 1 |
Vậy để B nguyên thì \(x\in\left\{-4;1;2;7\right\}\)
c, \(C=\dfrac{x+3}{x+1}=\dfrac{x+1+2}{x+1}=\dfrac{x+1}{x+1}+\dfrac{2}{x+1}=1+\dfrac{2}{x+1}\left(ĐKXĐ:x\ne-1\right)\)Để C nguyên thì \(x+1\inƯ\left(2\right)\)
Xét bảng :
x+1 | x |
2 | 1 |
-2 | -3 |
1 | 0 |
-1 | -2 |
Vậy để C nguyên thì \(x\in\left\{-3;-2;0;1\right\}\)
d, \(D=\dfrac{2x+10}{x+3}=\dfrac{2x+6+4}{x+3}=\dfrac{2\left(x+3\right)}{x+3}+\dfrac{4}{x+3}=2+\dfrac{4}{x+3}\left(ĐKXĐ:x\ne-3\right)\)
Để D nguyên thì \(x+3\inƯ\left(4\right)\)
Xét bảng:
x+3 | x |
1 | -2 |
-1 | -4 |
2 | -1 |
-2 | -5 |
4 | 1 |
-4 | -7 |
Vậy để D nguyên thì \(x\in\left\{-7;-5;-4;-2;-1;1\right\}\)