tính giá trị lớn nhất của biểu thức s = 27 - x / 2 - x , x là số nguyên khác 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(S=\frac{27-x}{2-x}=\frac{2-x+25}{2-x}=1+\frac{25}{2-x}\)
để Smax \(\Leftrightarrow\)\(\frac{25}{2-x}\)max \(\Leftrightarrow\)\(\frac{25}{2-x}\)> 0
\(\Leftrightarrow\)x < 2
Mà x thuộc Z \(\Rightarrow\)2 - x min \(\Leftrightarrow\)2 - x = 1 \(\Leftrightarrow\)x = 1
Vậy Smax \(\Leftrightarrow\)x = 1 \(\Rightarrow\)S = 26
\(S=\frac{27-x}{2-x}=1+\frac{25}{2-x}\)
Do x là số nguyên khác 2
=> Ta có 2 trường hợp
+) x-2 nguyên âm
\(\Rightarrow\frac{25}{2-x}< 0\Rightarrow S< 1\)(1)
+) x-2 nguyên dương
\(\Rightarrow\frac{25}{2-x}\le25\Rightarrow S\le26\)(2)
Từ (1) và (2) \(\Rightarrow S\le26\)
Dấu bằng xảy ra khi x=3
Bài 1 : Tìm giá trị lớn nhất của biểu thức \(S=\frac{27-x}{2-x}\)Với x là số nguyên khác 2
Help me ><
\(P=\dfrac{3\left(\sqrt{x}-2\right)+4}{\sqrt{x}-2}=3+\dfrac{4}{\sqrt{x}-2}\in Z\\ \Leftrightarrow\sqrt{x}-2\inƯ\left(4\right)=\left\{1;2;4\right\}\left(\sqrt{x}-2\ge2-2=0\right)\\ \Leftrightarrow\sqrt{x}\in\left\{3;4;6\right\}\\ \Leftrightarrow x\in\left\{9;16;36\right\}\left(tm\right)\)
Vậy chọn D
câu 1: =15
câu 2:=-98
câu 3: 54-(-16)-(-13)+27
= 70 - 14
= 56
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3