Tìm các GTLN của biểu thức sau
\(A=5-3.\left(2x-1\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|y-5\right|+\left|y+2012\right|\ge\left|y-5+2012+y\right|=2007\)
Dấu "=" khi \(-2012\le x\le5\)
Vậy MinA=2007 khi \(-2012\le x\le5\)
2)Ta thấy:\(\left|2x-3\right|\ge0\)
\(\Rightarrow-\left|2x-3\right|\le0\)
\(\Rightarrow-5-\left|2x-3\right|\le-5\)
Dấu "=" khi \(x=\frac{3}{2}\)
Vậy MaxN=-5 khi \(x=\frac{3}{2}\)
Câu hỏi của đào mai thu - Toán lớp 7 - Học toán với OnlineMath
eM THAM khảo nhé!
a) Ta có: ( 2x - 1 ) mũ 2 lớn hơn hoặc bằng 0 với mọi x.
=> 3 . ( 2x - 1 ) lớn hơn hoặc bằng 0 với mọi x
=> 5 - 3 . ( 2x - 1 ) nhỏ hơn hoặc bằng 5 với mọi x
Vậy maxA = 5
b) Ta có: ( x - 1 ) mũ 2 lớn hơn hoặc bằng 0
=> 2 . ( x - 1 ) mũ 2 lớn hơn hoặc bằng 0
=> 2 . ( x - 1 ) mũ 2 . 3 lớn hơn hoặc bằng 0
mà ko có phép chia cho 0 nên 2 . ( x - 1 ) . 3 lớn hơn hoặc bằng 1
=> B nhỏ hơn hoặc bằng 1
Vậy maxB = 1
a) Ta có: \(\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)(với mọi x,y)
=>\(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge-10\)
Dấu "=" xảy ra khi x=-2;y=1/5
Vậy GTNN của C là -10 tại x=-2;y=1/5
b)Ta có: \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+5\ge0\Rightarrow D=\frac{4}{\left(2x-3\right)^2+5}\le\frac{4}{5}\)
Dấu "=" xảy ra khi: x=3/2
Vậy GTLN của D là : 4/5 tại x=3/2
a)\(MaxA=\sqrt{3}\)<=>Dấu ''='' xảy ra
<=>x=2
b) Min A =2019<=>Dấu ''='' xảy ra
<=>2x-5=0
<=>x=5/2
2A = 2x (12 - 2x)
Áp dụng bất đẳng thức cosi
2x (12 - 2x) ≤ \(\dfrac{\left(2x+12-2x\right)^2}{4}\)
⇔ 2A ≤ 36
⇔ A ≤ 18
Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}0\le x\le6\\2x=12-2x\end{matrix}\right.\)⇔ x = 3
Vậy Amax = 18 khi x = 3
3.(2x-1)2>0
=>5-3.(2x-1)2<5
vậy Amax=5
dấu "=" xảy ra<=>x=1/2