tính:
S=22+42+62+...+202
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^2+4^2+6^2+....+20^2\)
\(=2^2.1^2+2^2.2^2+2^2.3^2+...+2^2.10^2\)
\(=2^2\left(1^2+2^2+3^2+...10^2\right)\)
\(=2^2.385=1540\)
Lời giải:
\(B=(1.2)^2+(2.2)^2+(3.2)^2+...+(10.2)^2\)
\(=2^2.1^2+2^2.2^2+2^2.3^2+...+2^2.10^2=2^2(1^2+2^2+...+10^2)\)
\(=4A=4.385=1540\)
Ta có \(2^2+4^2+...+20^2=2^2\left(1^2+2^2+...+10^2\right)=2^2.385=1540\).
S = 22 + 42 + 62 + ... + 202
= (2.1)2 + (2.2)2 + (2.3)2 ... (2.10)2
= 22.12 + 22.22 + 22.32 + ... + 22.102
= 22 (12 + 22 + ... + 102 )
= 4 . 385 = 1540
Ta có : \(1^2+2^2+3^2+.....+10^2=385\)
\(\Leftrightarrow2^2\left(1^2+2^2+3^2+.....+10^2\right)=2^2.385\)
\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=4.385\)
\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=1540\)
\(F=2^2+4^2+...+20^2\)
\(=\left(1.2\right)^2+\left(2.2\right)^2+...+\left(2.10\right)^2\)
\(=1.2^2+2^2.2^2+...2^2.10^2\)
\(=2^2\left(1+2^2+...+10^2\right)\)
\(=2^2.385\)
\(=4.385\)
\(=1540\)
2² + 4² + 6² + ... + 16² + 18²
= 4.(1 + 2² + 3² + ... + 8² + 9²)
= 4.285
= 1140
12 + 22 + 32 + 42 + 52 + 62 = 222
bạn k mình, mình k lại
\(B=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
\(B=\dfrac{1}{2.2}+\dfrac{1}{4.4}+...+\dfrac{1}{100.100}\)
\(B=\dfrac{1}{2}-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{100}-\dfrac{1}{100}\)
\(B=0+0+...+0\)
\(B=0\)
B=221+421+621+...+10021
�=12.2+14.4+...+1100.100B=2.21+4.41+...+100.1001
�=12−12+14−14+...+1100−1100B=21−21+41−41+...+1001−1001
�=0+0+...+0B=0+0+...+0
�=0B=0
tick cái
12+22+32+...+102=385
⇔385.22=22(12+22+32+....+102)
S=22+42+62+...+202
=385.4
=1540
Vậy S=1540
S = 22 + 42 + 62 +...+ 202
S = 22(12 + 22 + 32 +...+ 102)
S = 22(1 + 4 + 9 +...+ 100) (Thừa số thứ hai là tổng của các số chính phương không quá 100)
S = 22.385
S = 4.385
S = 1540
Nếu muốn bạn có thể làm theo cách này hoặc là cách khác đầy đủ hơn nhưng dài hơn. Nếu không thích cách này cứ bảo mình