Chứng minh rằng số A=1!+2!+...+n! (n thuộc N, n>3) không là số chính phương
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NT
0
9 tháng 12 2017
Đặt \(n^3-n+2=a^2\)
<=> \(n\left(n-1\right)\left(n+1\right)+2=a^2\)
Vì \(n\left(n-1\right)\left(n+1\right)\equiv0\left(mod3\right)\)
=> \(n\left(n-1\right)\left(n+1\right)+2\equiv2\left(mod3\right)\)
Mà 1 số chính phương chia 3 dư 0 hoặc 1
=> \(n^3-n+2\) không thể là số chính phương
Với n \(\ge\) 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33
Còn 5!; 6!; …; n! đều tận cùng bởi 0
Do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3
Mà các số có chữ số tận cùng là chữ số 3 không thể là số chính phương nên nó không phải là số chính phương (đpcm)
Với n $\ge$≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33
Còn 5!; 6!; …; n! đều tận cùng bởi 0
Do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3
Mà các số có chữ số tận cùng là chữ số 3 không thể là số chính phương nên nó không phải là số chính phương (đpcm)