K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2020

x\(\varepsilon\)(-\(\frac{1}{2}\);\(\frac{1}{2}\))

a, \(16x^2-5=0\)

\(\Rightarrow16x^2=5\)

\(\Rightarrow x^2=\frac{5}{16}\)

\(\Rightarrow x=\sqrt{\frac{5}{16}}\Rightarrow x=\frac{\sqrt{5}}{4}\)

b, \(2\sqrt{x-3}=4\)

\(\Rightarrow\sqrt{x-3}=4:2\)

\(\Rightarrow\sqrt{x-3}=2\)

\(\Rightarrow x-3=4\)

\(\Rightarrow x=4+3\)

\(\Rightarrow x=7\)

c, \(\sqrt{4x^2-4x+1}=3\)

\(\Rightarrow\sqrt{\left(2x-1\right)^2}=3\)

\(\Rightarrow2x-1=3\)

\(\Rightarrow2x=4\)

\(\Rightarrow x=2\)

d, \(\sqrt{x+3}\ge5\)

\(\Rightarrow x+3\ge25\)

\(\Rightarrow x\ge22\)

e, \(\sqrt{3x-1}< 2\)

\(\Rightarrow3x-1< 4\)

\(\Rightarrow3x< 5\)

\(\Rightarrow x< \frac{5}{3}\)

g, \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)

\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Rightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

\(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)

\(\Rightarrow\sqrt{x-3}=0\)

\(\Rightarrow x-3=0\)

\(\Rightarrow x=3\)

7 tháng 7 2019

a) \(16x^2-5=0\)

\(\Leftrightarrow16x^2=5\)

\(\Leftrightarrow x^2=\frac{5}{16}\)

\(\Leftrightarrow x=\pm\sqrt{\frac{5}{16}}\)

b) \(2\sqrt{x-3}=4\)

\(\Leftrightarrow\sqrt{x-3}=2\)

\(\Leftrightarrow x-3=4\)

\(\Leftrightarrow x=7\)

c) \(\sqrt{4x^2-4x+1}=3\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\)

\(\Leftrightarrow2x-1=3\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)

d) \(\sqrt{x+3}\ge5\)

\(\Leftrightarrow x+3\ge25\)

\(\Leftrightarrow x\ge22\)

e) \(\sqrt{3x-1}< 2\)

\(\Leftrightarrow3x-1< 4\)

\(\Leftrightarrow3x< 5\)

\(\Leftrightarrow x< \frac{5}{3}\)

g) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)

\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)

\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)

Vì \(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)

\(\Leftrightarrow\sqrt{x-3}=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

15 tháng 11 2019

Em trục căn thức:

\(\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\)

<=> \(\frac{-3x+3}{\sqrt{x+3}+2\sqrt{x}}=\frac{-x+1}{\sqrt{2x+2}+\sqrt{3x+1}}\)

=> nhân tử chung là -x + 1 . Tự làm tiếp nhé!

28 tháng 12 2020

làm như cô thì vẫn cần phải đánh giá rất khó chịu nhé

\(\sqrt{x+3}-2\sqrt{x}=\sqrt{2x+2}-\sqrt{3x+1}\left(ĐKXĐ:x\ge0\right)\)

\(< =>\sqrt{x+3}-\sqrt{2x+2}+\sqrt{3x+1}-2\sqrt{x}=0\)

\(< =>\frac{\sqrt{x+3}^2-\sqrt{2x+2}^2}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{\sqrt{3x+1}^2-4\sqrt{x}^2}{\sqrt{3x+1}+2\sqrt{x}}=0\)

\(< =>\frac{x+3-2x-2}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{3x+1-4x}{\sqrt{3x+1}+2\sqrt{x}}=0\)

\(< =>\frac{1-x}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{1-x}{\sqrt{3x+1}+2\sqrt{x}}=0\)

\(< =>\left(1-x\right)\left(\frac{1}{\sqrt{x+3}+\sqrt{2x+2}}+\frac{1}{\sqrt{3x+1}+2\sqrt{x}}\right)=0< =>x=1\)