K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2019

15 tháng 7 2021

a) Có AD ⊥ AB( góc A vuông)
          BC ⊥ AB( góc B vuông)
=> AD // BC
b) Có tứ giác ABCD= 360 độ
mà  A = B= 90 độ
=> C + D= ABCD - A - B
               = 360 độ - 90 độ - 90 độ
               = 180 độ
Có D = 3C và C + D = 180 độ
=> C = 45 độ
=> D = 135 độ
c) Có ABCD= 360 độ
  A = B= 90 độ
=> C + D= 180 độ
=> D =180 độ - C
+) D - C = 30 độ
<=> 180 độ - C - C = 30 độ
<=> 2C= 150 độ
<=> C = 75 độ
=> D = 105 độ
Vậy a) AD // BC
       b) C = 45 độ
           D = 135 độ
       c) C = 75 độ
           D = 105 độ

29 tháng 11 2018

Chắc Biết

9 tháng 10 2019

7 tháng 5 2019

Chọn B

Gọi I là trung điểm AB, J là trung điểm CD

Từ AC=AD=BC=BD =>IJ chính là đoạn vuông góc chung của 2 đường thẳng AB và CD

=> IJ = a

Gọi O là điểm cách đều 4 đỉnh => O là tâm mặt cầu ngoại tiếp tứ diện ABCD

=> O nằm trên IJ => Ta cần tính OA

Ta có:

17 tháng 7 2020

A B C D I

a. Gọi M là trung điểm của AC

Tam giác ABC vuông tại B có BM là đường trung tuyến nên:

 \(BM=\left(\frac{1}{2}\right).AC\)(tính chất tam giác vuông)

Tam giác ACD vuông tại D có DM là đường trung tuyến nên:

\(DM=\left(\frac{1}{2}\right).AC\) (tính chất tam giác vuông)

Suy ra: MA = MB = MC = MD

Vậy bốn điểm A, B, C, D cùng nằm trên một đường tròn tâm M bán kính bằng \(\left(\frac{1}{2}\right).AC\)

b. Trong đường tròn tâm M ta có BD là dây cung không đi qua tâm, AC là đường kính nên: BD < AC

AC = BD khi và chỉ khi BD là đường kính. Khi đó tứ giác ABCD là hình chữ nhật

3 tháng 1 2019

19 tháng 8 2019

CD ⊥ (ABC) vì CD ⊥ AB và CD ⊥ BC

AB ⊥ (BCD) vì AB ⊥ BC và AB ⊥ CD

Phương án A sai vì tam giác ABC không vuông góc tại C nên trung điểm của AB không cách đều ba điểm A, B, C

Phương án B sai vì tam giác ABC không vuông góc tại A nên trung điểm của BC không cách đều ba điểm A, B, C

Phương án C đúng vì tam giác ACD vuông góc tại C nên trung điểm K của AD cách đều ba điểm A, C, D; tam giác ABD vuông góc tại B nên trung điểm K của AD cách đều ba điểm A, B và D

Phương án D sai vì tam giác CBD không vuông góc tại B nên trung điểm của CD không cách đều ba điểm B, C, D.

Đáp án C