\(\left(x+2\right).\left(x^2+5\right)<0\)neu ca cach lam nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x + 2).( x - 5) < 0
<=> ( x+2) và ( x -5) trái dấu
TH1: ( x+2) <0 và ( x-5) >0
=> x < -2 và x > 5
=> không có x nào thỏa mãn ( loại)
TH2: ( x + 2) > 0 và (x - 5) <0
=> x > -2 và x < 5
=> -2 < x < 5 thì ( x + 2).( x - 5) <0
Tick giúp mình nha
Ta có: (x+2)(x2+5)<0
=>(x+2)<0 và x2+5>0 hoặc x+2>0 và x2+5 <0
Mà x2>=0 với mọi x
=>x2+5>0 với mọi x=>x2+5 không thể <0
=>x+2 < 0 và x2+5>0
Mà x2+5 >0 với mọi x
=>chỉ cẩn x+2 < 0 là (x+2)(x2+5) <0
=>x<-2
Vậy với x<-2 thì (x+2)(x2+5)<0
a) Ta có: \(\left(x-3\right)\left(x-5\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-3< 0\\x-5>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3>0\\x-5< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< 3\\x>5\end{cases}}\) (vô lý) hoặc \(\hept{\begin{cases}x>3\\x< 5\end{cases}}\)(thỏa mãn).
Vậy 3 < x < 5 thì (x-3)(x-5) <0.
b) \(-6x-\left(-7\right)=25\)
\(\Rightarrow-6x=25-7\)
\(\Rightarrow-6x=18\Rightarrow x=\frac{18}{-6}=-3\)
Vậy x = -3.
c) \(46-\left(x-11\right)=-48\)
\(\Rightarrow46-x+11=-48\)
\(\Rightarrow46+11+48=x\Rightarrow x=105\).
d) \(\left(x+15\right)\left(x-2\right)=0\)
\(\Rightarrow\)x + 15 = 0 hoặc x - 2 = 0
\(\Rightarrow x=-15\)hoặc \(x=2\).
e) \(3\left(4-x\right)-2\left(x-5\right)=12\)
\(\Rightarrow12-3x-2x+10=12\)
\(\Rightarrow-3x-2x=12-10-12\)
\(\Rightarrow-5x=-10\Rightarrow x=2\).
Chúc bn hc tốt!
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}\Rightarrow\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\Rightarrow\frac{1}{x}=\frac{11}{12}\Rightarrow x=\frac{12}{11}\)
hoặc \(\frac{1}{x}-\frac{2}{3}=-\frac{1}{4}\Rightarrow\frac{1}{x}=\frac{5}{12}\Rightarrow x=\frac{12}{5}\)
Vậy x = 12/11 , x = 12/5
Lí luận chung cho cả 4 câu :
Để tích này bé hơn 0 thì các thừa số phải trái dấu với nhau
a) Dễ thấy \(x-2>x-7\)
\(\Rightarrow\hept{\begin{cases}x-2>0\\x-7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 7\end{cases}\Leftrightarrow}2< x< 7}\)
b) tương tự
c) \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)
Dễ thấy \(x^4-11x^2+10< x^4-11x^2+28\)
\(\Rightarrow\hept{\begin{cases}x^4-11x^2+10< 0\\x^4+11x^2+10>0\end{cases}}\)
Tự giải nốt nha bạn mình bận rồi
Trả lời
Mk nghĩ bạn có thể tham khảo ở CHTT nha !
Có đáp án của câu b;c và d đó.
Đừng ném đá chọi gạch nha !
a) vi(x^2+5)(x^2-25)=0
=>x^2+5=0 hoac x^2-25=0
=>x=...hoac x=...(tu lam)
b)(x-2)(x+1)=0
=>x-2=0 hoac x+1=0
=>x=2 hoac x=-1
c)(x^2+7)(x^2-49)<0
=>x^2+7va x^2-49 trai dau
ma x^2+7>=7=>x^2-49<0=>x<7 va x>-7
con lai tuong tu
tu lam nhe nho k nha
Vế trái lớn hơn hoặc bằng 0 nên 11x lớn hơn hoặc bằng 0.
\(\Rightarrow x\ge0\)
Do vậy chỉ cần bỏ dấu giá trị tuyệt đối là tính được.
Kết quả cuối cùng được \(x=\frac{10}{11}\)
Ta có: (x+2)(x2+5)<0
=>(x+2)<0 và x2+5>0 hoặc x+2>0 và x2+5 <0
Mà x2>=0 với mọi x
=>x2+5>0 với mọi x=>x2+5 không thể <0
=>x+2 < 0 và x2+5>0
Mà x2+5 >0 với mọi x
=>chỉ cẩn x+2 < 0 là (x+2)(x2+5) <0
=>x<-2
Vậy với x<-2 thì (x+2)(x2+5)<0
+) x+2 < 0; x2 + 5 > 0
=> x < -2; x2 > -5
=> -5 < x2 < -2 (vô lí)
=> không tồn tại x
+) x+2 > 0; x2 + 5 < 0 (vô lí)
Vậy không tồn tại x.