K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

Chọn A.

Xét PT hoành độ     x 3 − 2 x 2 + 1 − m x + m = 0 (1) 

Để C m  cắt Ox tại 3 điểm có hoành độ là x 1 ; x 2 ; x 3 , tức PT (1) có 3 nghiệm phân biệt là  x 1 ; x 2 ; x 3

Áp dụng vi –ét có : x 1 + x 2 + x 3 = − b a = − − 2 1 = 2 x 1 x 2 + x 2 x 3 + x 1 x 3 = c a = 1 − m 1 = 1 − m x 1 x 2 x 3 = − d a = − m 1 = − m

 theo bài ta có

  x 1 2 + x 2 2 + x 3 2 = 4 ⇔ x 1 + x 2 + x 3 2 − 2 x 1 x 2 + x 2 x 3 + x 1 x 3 = 4 ⇔ 2 2 − 2 1 − m = 4 ⇔ 4 − 2 + 2 m = 4 ⇔ 2 m = 2 ⇔ m = 1

     

1. Chứng minh phương trình x4 + (m2-m)x3  +mx2 - 2mx -2 = 0 luôn có nghiệm thuộc khoảng (0;2) với mọi giá trị của tham số m.2. Cho hàm số y = \(\dfrac{x+1}{x-1}\) có đồ thị (C). Tìm tất cả giá trị của tham số m để đường thẳng (d): y = 2x + m cắt (C) tại hai điểm phân biệt mà hai tiếp tuyến của (C) tại hai điểm đó song song với nhau.3. Chứng minh rằng với mọi giá trị của tham số m thì phương...
Đọc tiếp

1. Chứng minh phương trình x4 + (m2-m)x3  +mx- 2mx -2 = 0 luôn có nghiệm thuộc khoảng (0;2) với mọi giá trị của tham số m.

2. Cho hàm số y = \(\dfrac{x+1}{x-1}\) có đồ thị (C). Tìm tất cả giá trị của tham số m để đường thẳng (d): y = 2x + m cắt (C) tại hai điểm phân biệt mà hai tiếp tuyến của (C) tại hai điểm đó song song với nhau.

3. Chứng minh rằng với mọi giá trị của tham số m thì phương trình \(x^4+mx^3-4x^2-mx+1=0\) luôn có nghiệm trên khoảng (0;1).

4. Cho hàm số: y = \(\dfrac{1}{3}x^3-\left(m+1\right)x^2+\left(2m+4\right)x-3\)  có đồ thị (Cm) (với m là tham số). Tìm m để trên đồ thị (Cm) có hai điểm phân biệt có hoành độ cùng dấu và tiếp tuyến của (Cm) tại mỗi điểm đó vuông góc với đường thẳng d: \(x+3y-6=0\)

5. Cho hàm số y = \(\dfrac{x+1}{x-2}\) có đồ thị (C); đường tròn (T) có tâm I(2;-5) và đi qua điểm E(3;-1). Tìm toạ độ các điểm M thuộc đồ thị (C) để tiếp tuyến của (C) tại M cắt đường tròn (T) tại hai điểm A, B sao cho tam giác EAB vuông tại E.

1
26 tháng 4 2021

Toi mới làm được câu 2 thoi à :( Mấy câu còn lại để rảnh nghĩ thử coi sao

\(PTHDGD:\dfrac{x+1}{x-1}=2x+m\Leftrightarrow x+1=\left(2x+m\right)\left(x-1\right)\)

\(\Leftrightarrow x+1=2x^2-2x+mx-m\Leftrightarrow2x^2+\left(m-3\right)x-m-1=0\)

De ton tai 2 diem phan biet \(\Leftrightarrow\Delta>0\Leftrightarrow\left(m-3\right)^2+8m+8>0\Leftrightarrow m^2+2m+17>0\Leftrightarrow\left(m+1\right)^2+16>0\forall x\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{3-m}{2}\\x_1x_2=\dfrac{-m-1}{2}\end{matrix}\right.\)

Vi 2 tiep tuyen tai 2 diem x1, x2 song song voi nhau

\(\Rightarrow f'\left(x_1\right)=f'\left(x_2\right)\)

\(f'\left(x\right)=\dfrac{x-1-x-1}{\left(x-1\right)^2}=-\dfrac{2}{\left(x-1\right)^2}\)

\(\Rightarrow\dfrac{1}{\left(x_1-1\right)^2}=\dfrac{1}{\left(x_2-1\right)^2}\Leftrightarrow x_1^2-2x_1+1=x_2^2-2x_2+1\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)-2\left(x_1-x_2\right)=0\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_1=x_2\left(loai\right)\\x_1+x_2=2\end{matrix}\right.\Leftrightarrow\dfrac{3-m}{2}=2\Leftrightarrow m=-1\) 

1 tháng 8 2017

Chọn D.

Phương trình hoành độ giao điểm (C) và d là :

Để (C) cắt d tại một điểm ⇔ Phương trình (1) vô nghiệm hay phương trình (1) có nghiệm kép bằng 1

NV
9 tháng 1 2019

1/ \(y=x^3+3x^2+mx+m-2\)

\(y'=3x^2+6x+m\)

Chia đa thức \(y\) cho \(y'\) được phần dư là \(\left(\dfrac{2m}{3}-2\right)x+\dfrac{2m}{3}-2\)

\(\Rightarrow\)Phương trình đường thẳng \(d\) đi qua 2 cực trị có dạng:

\(y=\left(\dfrac{2m}{3}-2\right)x+\dfrac{2m}{3}-2\)

Gọi A là giao điểm của \(d\) với \(Ox\Rightarrow A\left(-1;0\right)\)

Đồ thị hàm số có 2 cực trị B, C nằm về 2 phía trục hoành khi và chỉ khi A nằm giữa B và C

\(\Rightarrow x_B< -1< x_C\) với \(x_B;x_C\) là nghiệm của pt \(f\left(x\right)=3x^2+6x+m=0\)

\(\Rightarrow3.f\left(-1\right)< 0\Leftrightarrow3\left(3-6+m\right)< 0\Rightarrow m< 3\)

Vậy với \(m< 3\) thì đồ thị hs có 2 cực trị nằm về 2 phía trục hoành

2/

\(y=x^3+3mx^2+m+1\Rightarrow y'=3x^2+6mx\)

Để hàm số có 2 cực trị \(\Rightarrow m\ne0\)

Chia đa thức \(y\) cho \(y'\) được phân dư \(-2m^2x+m+1\)

\(\Rightarrow\) phương trình đường thẳng \(d\) qua 2 cực trị có dạng:

\(y=-2m^2x+m+1\)

Để \(d\) song song đường thẳng \(y=-x+2017\)

\(\Rightarrow\left\{{}\begin{matrix}-2m^2=-1\\m+1\ne2017\end{matrix}\right.\) \(\Rightarrow m=\pm\dfrac{\sqrt{2}}{2}\)

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

Bài 1: Ta có

\(y'=0\Leftrightarrow x[2mx^2-(m+1)]=0\)

\(\Leftrightarrow \left[\begin{matrix} x=0\\ 2mx^2-(m+1)=0(1)\end{matrix}\right.\)

Một điểm nằm trên trục tọa độ thì tung độ hoặc hoành độ phải bằng $0$. Do đó yêu cầu đề bài được đáp ứng khi $y'=0$ có nghiệm $x=0$ hoặc nếu $x$ khác $0$ thì tung độ tương ứng phải bằng $0$

+) Nếu \(m=0\) : $(1)$ vô nghiệm . $y'=0$ có nghiệm duy nhất $x=0$ (thỏa mãn)

+) Nếu $m=-1$ : $(1)$ có nghiệm $x=0$ (thỏa mãn)

+) Nếu $-1< m< 0$. Từ \((1)\Rightarrow x^2=\frac{m+1}{2m}< 0\) (vô lý) nên $(1)$ vô nghiệm. $y'=0$ có nghiệm duy nhất $x=0$ (thỏa mãn)

+) Nếu \(m>0\) hoặc \(m< -1\)

$(1)$ có 2 nghiệm \(x=\pm \sqrt{\frac{m+1}{2m}}\neq 0\)

\(\Rightarrow y=m(\pm \sqrt{\frac{m+1}{2m}})^4-(m+1)(\pm \sqrt{\frac{m+1}{2m}})^2+(m+1)\)

\(=\frac{(m+1)^2}{4m}-\frac{(m+1)^2}{2m}+(m+1)\)

\(=(m+1)-\frac{(m+1)^2}{4m}=0\)

\(\Leftrightarrow \left[\begin{matrix} m=-1\\ m=\frac{1}{3}\end{matrix}\right.\) . Vì \(\Rightarrow m=\frac{1}{3}\)

Vậy \(-1\leq m\leq 1 \text{or m}=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

Bài 2:

Ta có: \(y'=4x^3+4mx=0\Leftrightarrow x(x^2+m)=0\)

Nếu $m\geq 0$. PT $y'=0$ có duy nhất nghiệm $x=0$. Ta chỉ thu được 1 điểm cực trị (loại)

Nếu $m<0$. Ngoài $x=0$ pt $y'=0$ còn có 2 nghiệm \(x=\pm \sqrt{-m}\neq 0\)

(thu được 3 cực trị)

Khi đó:

\(y=(\pm \sqrt{-m})^4+2m(\pm \sqrt{-m})^2+4=m^2-2m^2+4=4-m^2\)

Để điểm cực trị nằm trên trục tọa độ thì \(y=0\Leftrightarrow 4-m^2=0\Leftrightarrow m=-2\) (do $m< 0$)

Vậy \(m=-2\)

3 tháng 1 2019

hello ban

17 tháng 5 2020

Trả lời :

Bn Do Phuong Mai đừng bình luận linh tinh nhé !

- Hok tốt !

^_^

7 tháng 7 2017

Đáp án C

Số giao điểm của đường thẳng y = ( m - 1 ) x  và đồ thị hàm số y = x 3 - 3 x 2 + m + 1  là số nghiệm của PT  x 3 - 3 x 2 + m + 1 = ( m - 1 ) x ⇔ x 3 - 3 x 2 + x + 1 - m x + m = 0 ⇔ ( x - 1 ) ( x 2 - 2 x - m - 1 ) = 0  để tồn tại ba giao điểm phân biệt thì 1 - 2 - m - 1 ≢ 0 ∆ ' = 1 + m + 1 > 0 ⇔ m ≢ - 2 m > - 2   khi đó tọa độ ba giao điểm là  B ( 1 ; m - 1 ) , A ( x 1 ; y 1 ) , C ( x 2 ; y 2 )  hơn nữa  x 1 + x 2 2 = 1 y 1 + y 2 2 = ( m - 1 ) x 1 + ( m - 1 ) x 2 2 = ( m - 1 ) ( x 1 + x 2 ) 2 = m - 1

⇒ B là trung điểm AC hay ta có AB=BC 

19 tháng 12 2021

Chọn B

19 tháng 1 2022

Hỏi mãi chiếm hết cả web ko trả lời nữa 

 

31 tháng 12 2019

Đáp án B.

Phương trình hoành độ giao điểm của (C) và d : x − 2 x − 1 = − x + m  

⇔ x ≠ 1 x − 2 = ( − x + m ) ( x − 1 ) ⇔ x ≠ 1 f ( x ) = x 2 − m x + m − 2 = 0 ( * )  

Để (C) và d cắt nhau tại hai điểm phân biệt A, B khi và chỉ khi phương trình (*) có hai nghiệm phân biệt x 1 , x 2  khác 1

⇔ f ( 1 ) = 1 2 − m + m − 2 ≠ 0 Δ = - m 2 − 4 ( m − 2 ) > 0 ⇔ − 1 ≠ 0 m 2 − 4 m + 8 m > 0 ⇔ m ∈ ℝ .

Mặt khác OAB là tam giác nên  O ∈ d  hay m ≠ 0  .

Gọi A ( x 1 ; − x 1 + m )  và B ( x 2 ; − x 2 + m )  . Suy ra O A = 2 x 1 2 − 2 m x 1 + m 2 O B = 2 x 2 2 − 2 m x 2 + m 2  

Do x 1 , x 2  là hai nghiệm của phương trình (*) nên x 1 2 − m x 1 = 2 − m x 2 2 − m x 2 = 2 − m  

Khi đó   O A = 2 ( 2 − m ) + m 2 = m 2 − 2 m + 4 O B = 2 ( 2 − m ) + m 2 = m 2 − 2 m + 4

Từ giả thiết ta có :

2 m 2 − 2 m + 4 = 1 ⇔ m 2 − 2 m + 4 = 2 ⇔ m ( m − 2 ) = 0 ⇔ m = 0 m = 2

Đối chiếu với điều kiện ta được m=2 thỏa mãn.

11 tháng 3 2019