d) a/2=b/3,b/5=c/4 và a-b+c=-49
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
Bài 2: Mình nghĩ câu a là a+2b-3c=-20
a) Ta có: a/2 = b/3 = c/4 = 2b/6 = 3c/12 = a + 2b - 3c/ 2 + 6 - 12 = -20/-4 = 5
a/2 = 5 => a = 2 . 5 = 10
b/3 = 5 => b = 5 . 3 = 15
c/4 = 5 => c = 5 . 4 = 20
Vậy a = 10; b = 15; c = 20
b) Ta có: a/2 = b/3 => a/10 = b/15
b/5 = c/4 => b/15 = c/12
=> a/10 = b/15 = c/12 = a - b + c / 10 - 15 + 12 = -49/7 = -7
a/10 = -7 => a = -7 . 10 = -70
b/15 = -7 => b = -7 . 15 = -105
c/12 = -7 => c = -7 . 12 = -84
Vậy a = -70; b = -105; c = -84.
\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\)
\(\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\)
Suy ra \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
\(\Rightarrow a=-70;b=-105;c=-84\)
a/2=b/3 \(\Rightarrow\)a/10=b/15
b/5=c/4\(\Rightarrow\)b/15=c/12
Từ 2 đk : a/10=b/15=c/12
\(\Rightarrow\)a/10=b/15=c/12=a-b+c/10-15+12
mà a-b+c =-49
nên: a/10=b/15=c/12=-49/7=-7
Lời giải:
$\frac{a}{2}=\frac{b}{3}; \frac{b}{5}=\frac{c}{4}$
$\Rightarrow \frac{a}{10}=\frac{b}{15}=\frac{c}{12}$
Áp dụng TCDTSBN:
$\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7$
$\Rightarrow a=10.(-7)=-70; b=15(-7)=-105; c=12(-7)=-84$
\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\)
\(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Leftrightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
Từ đó suy ra : a = -70 , y = -105 , c = -84
\(\text{Ta có: }\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\)
\(\Rightarrow\frac{a}{2.5}=\frac{b}{3.5};\frac{b}{5.3}=\frac{c}{4.3}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15};\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có:}\)
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
\(\cdot\frac{a}{10}=-7\Rightarrow a=-70\)
\(\cdot\frac{b}{15}=-7\Rightarrow b=-105\)
\(\cdot\frac{c}{12}=-7\Rightarrow c=-84\)
\(\text{Vậy a = -70 ; b = -105 và c = -84}\)
Theo bài ra , ta có :
\(\frac{a}{2}=\frac{b}{3}\); \(\frac{b}{5}=\frac{c}{4}\) \(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
và \(a-b+c=-49\)
Áp dụng công thức dãy tỉ số bằng nhau , ta có :
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
- \(\frac{a}{10}=-7\Rightarrow a=-7.10=-70\)
- \(\frac{b}{15}=-7\Rightarrow b=-7.15=-105\)
- \(\frac{c}{12}=-7\Rightarrow c=-7.12=-84\)
Vậy \(a=-70;b=-105;c=-84\)
Ta có:
\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\)
\(\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\)
Suy ra: \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=-\frac{49}{7}=-7\)
\(\Rightarrow\)\(\frac{a}{10}=-7\Rightarrow a=\left(-7\right).10=-70\)
\(\frac{b}{15}=-7\Rightarrow b=\left(-7\right).15=-105\)
\(\frac{c}{12}=-7\Rightarrow c=\left(-7\right).12=-84\)
Vậy: \(a=-70;b=-105;c=-84\)
Ta có:
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\Rightarrow\)\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
\(\frac{a}{10}=-7\Rightarrow a=-7\cdot10=-70\)
\(\frac{b}{15}=-7\Rightarrow b=-7\cdot15=-105\)
\(\frac{c}{12}=-7\Rightarrow c=-7\cdot12=-84\)
Vậy a = -70, b = -105, c = -84
b) Ta có : \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Khi đó \(a=12.\dfrac{3}{2}=18;b=12.\dfrac{4}{3}=16;c=12.\dfrac{5}{4}=15\)
Vậy (a,b,c) = (18,16,15)
Ta có \(\frac{a}{2}=\frac{b}{3}\)=>\(\frac{a}{10}=\frac{b}{15}\)(1)
và \(\frac{b}{5}=\frac{c}{4}\)=>\(\frac{b}{15}=\frac{c}{12}\)(2)
Từ (1) và (2) => \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
Vậy \(a=-7.10=-70\)
\(b=-7.15=-105\)
\(c=-7.12=-84\)