Tính giá trị lớn nhất và nhỏ nhất của hàm số:
y = 5 - 4 x trên đoạn [-1 ; 1].
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y ' = - 2 x - 1 2 < 0 trên đoạn [3; 5]. Vậy hàm số nghịch biến trên đoạn [3; 5].
Khi đó trên đoạn [-3,5]: hàm số đạt giá trị lớn nhất tại x = 3 và giá trị lớn nhất bằng 2, hàm số đạt giá trị nhỏ nhất tại x = 5 và giá trị nhỏ nhất = 1.5.
Đáp án B
Phương pháp:
Phương pháp tìm GTLN, GTNN của hàm số y = f(x) trên [a;b]
+) Bước 1: Tính y’, giải phương trình y' = 0 ⇒ xi ∈ [a;b]
+) Bước 2: Tính các giá trị f(a); f(b); f(xi)
+) Bước 3:
\(y'=3x^2-6x-9=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
a. Trên [-4;4] ta có:
\(y\left(-4\right)=-41\) ; \(y\left(-1\right)=40\) ; \(y\left(3\right)=8\) ; \(y\left(4\right)=15\)
\(\Rightarrow y_{min}=-41\) ; \(y_{max}=40\)
b. Trên [0;5] ta có:
\(y\left(0\right)=35\) ; \(y\left(3\right)=8\); \(y\left(5\right)=40\)
\(\Rightarrow y_{max}=40\) ; \(y_{min}=8\)
TXĐ: D = R.
y ' = 3 x 2 - 6 x - 9 ;
y' = 0 ⇔ x = –1 hoặc x = 3.
+ Xét hàm số trên đoạn [-4; 4] :
y(-4) = -41 ;
y(-1) = 40 ;
y(3) = 8
y(4) = 15.
+ Xét hàm số trên [0 ; 5].
y(0) = 35 ;
y(3) = 8 ;
y(5) = 40.
TXĐ: D = (-∞; 1) ∪ (1; +∞)
> 0 với ∀ x ∈ D.
⇒ hàm số đồng biến trên (-∞; 1) và (1; +∞).
⇒ Hàm số đồng biến trên [2; 4] và [-3; -2]
TXĐ: D = (-∞; 5/4]
⇒ Hàm số nghịch biến trên (-∞; 5/4)
⇒ Hàm số nghịch biến trên [-1; 1]