K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2016

ko co p vua nay nham

 

9 tháng 1 2016

p=3 trời ạ

 

9 tháng 7 2017

Với p = 2 ta co  2p + p2 = 12  không là số nguyên tố

Với p = 2 ta có 2p + p2 = 17 là số nguyên tố

Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )

Vì p lẽ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó  2p + p2  là hợp số

Vậy với p = 3 thì 2p + p2  là số nguyên tố.

19 tháng 12 2023

Với p = 2 ta co  2p + p2 = 12  không là số nguyên tố

Với p = 2 ta có 2p + p2 = 17 là số nguyên tố

Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )

Vì p lẻ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó  2p + p là hợp số

Vậy với p = 3 thì 2p + p2  là số nguyên tố

18 tháng 8 2021

Với p = 2 ta co  2p + p2 = 12  không là số nguyên tố

Với p = 2 ta có 2p + p2 = 17 là số nguyên tố

Với p > 3 ta có p2 + 2p = (p2 – 1) + (2p + 1 )

Vì p lẽ và p không chia hết cho 3 nên p2 – 1 chia hết cho 3 và 2p + 1 chia hết cho 3. Do đó  2p + p2  là hợp số

Vậy với p = 3 thì 2p + p2  là số nguyên tố.

HT

p = 1

nha bạn 

chúc bạn học tốt nha 

3 tháng 1 2016

p.q + 1là số nguyên tố

Mà p.q + 1 > 3 => p .q + 1 lẻ => p.q chẵn

< = > p = 2 hoặc q = 2 

Bạn liệt kê ra 

5 tháng 2 2022

Xét p=2

⇒ \(2^2+2^2=4+4=8\left(L\right)\)

Xét p=3

⇒ \(2^3+3^2=8+9=17\left(TM\right)\)

Xét p>3

⇒ p+ 2= (p2 – 1) + (2p + 1 )

Vì p lẻ và p không chia hết cho 3 nên (p2–1)⋮3 và (2p+1)⋮3.

Do đó:  2p+p2là hợp số (L)

Vậy với p = 3 thì 2p + p2  là số nguyên tố.

5 tháng 2 2022
NV
12 tháng 1 2022

1.

\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)

\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Do x, y nguyên dương nên số đã cho là SNT khi:

\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)

\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)

Thay vào kiểm tra thấy thỏa mãn

2. \(N=n^4+4^n\)

- Với n chẵn hiển nhiên N là hợp số

- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)

\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)

\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)

Mặt khác:

\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)

\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)

\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1

\(\Rightarrow\) N là hợp số

NV
12 tháng 1 2022

Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).

Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9

Nó cũng không thể chỉ chứa các chữ số  3 và 9 (sẽ chia hết cho 3)

Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)

14 tháng 12 2023

+Nếu p=2 => p+2=2+2=4 là hợp số (loại)

+Nếu p=3 => p+2=3+2=5, p+4=3+4=7 là các số nguyên tố (thỏa mãn)

+Nếu p>3:p lại là số nguyên tố=>p có dạng 3k+1 hoặc 3k+2(k\(\in N\)*)

    -Với p=3k+1. Ta có: p+2=3k+1+2=3k+3 \(⋮\)3 là hợp số (loại)

    -Với p=3k+2. Ta có: p+4=3k+2+4=3k+6\(⋮\)3 là hợp số (loại)

=> p>3 không thỏa mãn

Vậy p=3

 

20 tháng 8 2024

555

 

25 tháng 2 2021

* Xét p = 2 thì \(2^p+p^2=2^2+2^2=8\)(loại, không là số nguyên tố)

* Xét p = 3 thì \(2^p+p^2=2^3+3^2=17\)(là số nguyên tố)

* Xét p > 3 thì \(2^p+p^2=\left(2^p+1\right)+\left(p^2-1\right)⋮3\)(Do p lẻ nên \(2^p+1⋮3\)và p không chia hết cho 3 nên\(p^2-1⋮3\))

Lại có \(2^p+p^2>2^3+3^2=17>3\)nên không là số nguyên tố

Vậy p = 3 thì 2p + p2 là số nguyên tố

Note: trường hợp p > 3 còn có một cách nữa là sử dụng đồng dư

p là số nguyên tố lớn hơn 3 thì \(2^p\equiv2\left(mod3\right)\Rightarrow2^p\)chia 3 dư 2

Mặt khác p là số nguyên tố lẻ hên \(p^2\)chia 3 dư 1 suy ra \(2^p+p^2⋮3\)

Done!

18 tháng 4 2020

p = 2. Vì 2 + 11 = 13 mà 13 là số nguyên tố. Và ngoài số 2 ra, không có số nguyên tố nào là số chẵn mà số 11 khi công với các số lẻ sẽ thành số chẵn.

p = 3; 5; 7; 11; ...( tất cả các số nguyên tố khác 2 )

Xong rùi đó. Chúc bạn học tốt! Nhớ k cho mình nha!