Cho hình trụ có hai đáy là hai đường tròn (O;R) và (O';R), chiều cao bằng đường kính đáy. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn đáy tâm O' lấy điểm B. Thể tích của khối tứ diện OO'AB có giá trị lớn nhất bằng:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Diện tích xung quang của hình trụ là: S 1 = 2 π R . R 3 = 2 π R 2 3
Độ dài đường sinh của hình nón là: l = R 2 + R 3 2 = 2 R
Diện tích xung quanh của hình nón là: S 2 = π R l = π R .2 R = 2 π R 2
Tính tỉ số giữa diện tích xung quang của hình trụ và diện tích xung quanh của hình nón
S 1 S 2 = 2 π R 2 3 2 π R 2 = 3
a) Viết chữ thích hợp vào chỗ chấm:
Đây là hình tròn tâm O.
- Các bán kính có trong hình tròn là: OA, OB, OC, OD.
- Các đường kính có trong hình tròn là: AB, DC.
b) Đúng ghi Đ, sai ghi S:
Đây là hình tròn tâm I
- Các bán kính có trong hình tròn là: IM, IN
- Đường kính có trong hình tròn là: MN
- Các bán kính có trong hình tròn là: OQ và OP
- Đường kính có trong hình tròn là PQ
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Suy ra: OM=ON
Xét ΔOQP có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOQP cân tại O
Suy ra: OQ=OP
Ta có: OM+OP=MP
ON+OQ=NQ
mà OM=ON
và OP=OQ
nên MP=NQ
Xét hình thang MNPQ có MP=NQ
nên MNPQ là hình thang cân
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Xét ΔOQP có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOQP cân tại O
Ta có: MP=MO+OP
NQ=NO+OQ
mà MO=NO
và OP=OQ
nên MP=NQ
Xét hình thang MNPQ có MP=NQ
nên MNPQ là hình thang cân
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Suy ra: OM=ON
Xét ΔOQP có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOQP cân tại O
Suy ra: OQ=OP
Ta có: OM+OP=MP
ON+OQ=NQ
mà OM=ON
và OP=OQ
nên MP=NQ
Xét hình thang MNPQ có MP=NQ
nên MNPQ là hình thang cân
Ta có: \(\widehat{OMN}=\widehat{OPQ}\)
\(\widehat{ONM}=\widehat{OQP}\)
mà \(\widehat{OMN}=\widehat{ONM}\)
nên \(\widehat{OPQ}=\widehat{OQP}\)
Xét ΔOMN có \(\widehat{OMN}=\widehat{ONM}\)
nên ΔOMN cân tại O
Xét ΔOQP có \(\widehat{OPQ}=\widehat{OQP}\)
nên ΔOQP cân tại O
Ta có: MP=MO+OP
NQ=NO+OQ
mà MO=NO
và OP=OQ
nên MP=NQ
Xét hình thang MNPQ có MP=NQ
nên MNPQ là hình thang cân
Từ B, kẻ BN vuông góc với CD, BN cắt EG tại M.
=> NC = DC - DN = 20m ; ED = 10m
và EM = AB = 40m
*Tính MG=?
ta có ABND là hình vuông, có cạnh là 40m
Tam giác BMG đồng dạng tam giác BNC vì:
góc B chung
góc M bằng góc góc N
Nên : ta có tỉ số đồng dạng BM/BN = MG/NC
<=> 30/40 = MG/20
<=> MG = 15m
Do đó : EG = EM + MG = 40 + 15 = 55m
Vậy: diện tích hình thang ABGE là : S1 = (AB+GE)*AE/2 = 1425 (m2)
* Tính diện tích hình thang ABCD:
ta có : S = (AB+CD)*AD/2 = 2000 (m2)
Trong tam giác ABG, kẻ đường cao GH vuông góc AB tại H
=> GH = AE = 30m
Diện tích tam giác ABG là : S2 = GH*AB/2 = 600 (m2)
Vậy diện tích tứ giác AGCD là :
S3 = S - S2 = 1400 (m2)