Tìm tất cả các số phức z thỏa mãn đồng thời hai điều kiện và số thuần ảo
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đáp án D
Gọi z = x + y i , x , y ∈ ℝ .
Ta có x 2 + y − 1 2 = 16, x = 0 ⇒ y = − 3 y = 5 .
Vậy có 2 số phức thỏa mãn đề bài

Chọn B.
Giả sử z = x + yi. Theo bài ra ta có: |x + 1 + (y – 2)i| = |x + 3 + (4 – y)i|
hay ( x + 1) 2+ ( y - 2) 2 = ( x + 3) 2 + ( y - 4) 2
suy ra y = x + 5
Số phức
w là một số ảo
Vậy

Đặt z=x+yi ta có hệ đều kiện:
Ta có (1) là tập hợp các cạnh của hình vuông ABCD có tâm là gốc toạ độ độ dài cạnh bằng a = m 2 2 ; là đường tròn (C) có tâm là gốc toạ độ O bán kính bằng R = m.
Để có đúng 8 số phức thoả mãn thì (C) phải nằm giữa đường tròn ngoại tiếp và đường tròn nội tiếp hình vuông
Chọn đáp án D.
Đáp án A.