: Cho M = 7 + 7 2 + 7 3 +……+ 7 2021 . Tìm x để 6M +7 = 7 x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+2\left(m-1\right)x-6m-7=0\)\(0\)
\(\left(a=1;b=2\left(m-1\right);b'=m-1;c=-6m-7\right)\)
\(\Delta'=b'^2-ac\)
\(=\left(m-1\right)^2-1.\left(-6m-7\right)\)
\(=m^2-2m+1+6m+7\)
\(=m^2+4m+8\)
\(=m^2+2.m.2+2^2+4\)
\(=\left(m+2\right)^2+4>0,\forall m\)
Vì \(\Delta'>0\) nên phương trình ( 1 ) luôn có 1 nghiệm phân biệt với mọi m
1:
a: =7/5(40+1/4-25-1/4)-1/2021
=21-1/2021=42440/2021
b: =5/9*9-1*16/25=5-16/25=109/25
a, Để hàm số là hàm bậc nhất thì \(\left(-m^2+m-2\right)\ne0\)
\(\Rightarrow-\left(m-\dfrac{1}{2}\right)^2-\dfrac{7}{4}\ne0\) (luôn đúng vì \(-\left(m-\dfrac{1}{2}\right)^2\le0\forall m\))
Vậy hàm số luôn là hàm bậc nhất.
b,Để hàm số là hàm bậc nhất thì \(\left\{{}\begin{matrix}2m^2-6m=0\\2m+3\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m=0\\m=3\\m\ne-\dfrac{3}{2}\end{matrix}\right.\left(tm\right)\)
Vậy hàm số là hàm bậc nhất khi m ∈ {0;3}.
\(a,\Rightarrow x^2+4x+4+x^2-2x+1+x^2-9-3x^2=-8\\ \Rightarrow2x=-4\Rightarrow x=-2\\ b,\Rightarrow\left(x-2021\right)\left(2022x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2021\\x=\dfrac{1}{2022}\end{matrix}\right.\\ c,\Rightarrow\left(x^2-9\right)-\left(x-3\right)\left(2x+7\right)=0\\ \Rightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(2x+7\right)=0\\ \Rightarrow\left(x-3\right)\left(x+3-2x-7\right)=0\\ \Rightarrow\left(x-3\right)\left(-4-2x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
a)7A = 72+73+.........+7199+7200
suy ra 7A - A = 7200-7
6A = 7200-7
nên \(A=\frac{7^{200}-7}{6}\)
b) 6A = 7200-7
suy ra 6A + 7 = 7200 = 7x+2
=> x + 2 = 200
=> x = 200 - 2
=> x = 198
1) Ta có: \(\left(\dfrac{3}{4}\cdot\dfrac{5}{97}+\dfrac{1}{9}\cdot\dfrac{13}{47}\right)\cdot\left(\dfrac{1}{5}-\dfrac{7}{25}\cdot\dfrac{5}{7}\right)\)
\(=\left(\dfrac{3}{4}\cdot\dfrac{5}{97}+\dfrac{1}{9}\cdot\dfrac{13}{47}\right)\cdot\left(\dfrac{1}{5}-\dfrac{1}{5}\right)\)
=0
2) Ta có: \(\dfrac{8}{17}\cdot\dfrac{4}{15}+\dfrac{8}{17}\cdot\dfrac{22}{15}-\dfrac{8}{15}\cdot\dfrac{9}{17}\)
\(=\dfrac{8}{17}\left(\dfrac{4}{15}+\dfrac{22}{15}-\dfrac{9}{15}\right)\)
\(=\dfrac{8}{17}\cdot\dfrac{15}{15}=\dfrac{8}{17}\)
3) Ta có: \(\dfrac{2021}{2}\cdot\dfrac{1}{3}+\dfrac{4042}{4}\cdot\dfrac{1}{5}+\dfrac{6063}{3}\cdot\dfrac{22}{15}\)
\(=\dfrac{2021}{2}\left(\dfrac{1}{3}+\dfrac{1}{5}\right)+2021\cdot\dfrac{22}{15}\)
\(=\dfrac{2021}{2}\cdot\dfrac{8}{15}+\dfrac{2021}{2}\cdot\dfrac{44}{15}\)
\(=\dfrac{2021}{2}\cdot\dfrac{52}{15}\)
\(=\dfrac{52546}{15}\)
4) Ta có: \(\dfrac{4}{7}\cdot\dfrac{2}{13}+\dfrac{8}{13}:\dfrac{7}{4}+\dfrac{4}{7}:\dfrac{13}{2}+\dfrac{4}{7}\cdot\dfrac{1}{13}\)
\(=\dfrac{4}{7}\left(\dfrac{2}{13}+\dfrac{8}{13}+\dfrac{2}{13}+\dfrac{1}{13}\right)\)
\(=\dfrac{4}{7}\)
x2^2-x1x2+2(m-2)x1=m^2-6m+23
=>x2^2+x1(x1+x2)-x1x2=m^2-6m+23
=>(x1+x2)^2-2x1x2=m^2-6m+23
=>(2m-4)^2-2(-7)=m^2-6m+23
=>4m^2-16m+16+14-m^2+6m-23=0
=>m=7/3 hoặc m=1
B=7+72+...+71998
7B=72+73+...+71999
7B+7=7+72+...+71998+71999=B+71999
7B-B=71999-7
6B+7=71999
mà 6B+7=7x
nên x=1999
Vậy x=1999
Ko biết
mik cũng ko bt
,_,