K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

Ta có

Đáp án cần chọn là: A

1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)a)rút gọn A và tính A khi x=2b)Rút gọn B và tìm x để B=2/5c)tìm x thuộc Z  để (A,B)thuộc Z 2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3a)rút gọn biểu thức A   b) tính giá trị biểu thức A khi /x-5/=2c)tìm x để A>03)B= x+2/x+3 - 5/x^2+x-6 - 1/2-xa)rút gọn biểu thức B    b)tìm x để B=3/2   c) tìm giá trị nguyên của x để B có giả trị...
Đọc tiếp

1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z  để (A,B)thuộc Z
 
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A   b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0

3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B    b)tìm x để B=3/2   c) tìm giá trị nguyên của x để B có giả trị nguyên

4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C    b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1         d) tìm giá trị nhỏ nhất của biểu thức C

5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D 
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
 

2
7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

15 tháng 11 2017

3x+7=28

3x    =28-7

3x     =21

  x    =21:3

 x      =7

28 tháng 4 2020

a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\)

\(A=\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}\)

\(=\frac{x+3\sqrt{x}+\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(=\frac{x+4\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}-5}\)

\(\Rightarrow P=\frac{\sqrt{x}-1}{\sqrt{x}-5}:\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)

b) Để P nguyên

\(\Leftrightarrow\sqrt{x}-1⋮\sqrt{x}+2\)

\(\Leftrightarrow3⋮\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{-3;-1;-5;1\right\}\)

Mà \(\sqrt{x}\ge0,\forall x\)

\(\Leftrightarrow\sqrt{x}=1\)

\(\Leftrightarrow x=1\)

Vậy để P nguyên \(\Leftrightarrow x=1\)

bài 1/ 

a) ta có: \(A=\frac{15}{x-1}\)

Để A là phân số \(\Rightarrow x-1\ne0\)

                          \(\Rightarrow x\ne1\)

b) Nếu x = 7

\(\Rightarrow A=\frac{15}{7-1}\)

\(\Rightarrow A=\frac{15}{6}\)

Nếu x = -3

\(\Rightarrow A=\frac{15}{-3-1}\)

\(\Rightarrow A=\frac{15}{-4}\)

Nếu x = 4

\(\Rightarrow A=\frac{15}{4-1}\)

\(\Rightarrow A=\frac{15}{3}=5\)

c) Ta có: \(B=5\)

\(\Leftrightarrow A=\frac{15}{x-1}=5\)

\(\Leftrightarrow x-1=3\)

\(\Leftrightarrow x=4\)

Bài 2/

a) \(\frac{x}{3}=\frac{2}{6}\)

\(\Leftrightarrow6x=6\)

\(\Leftrightarrow x=1\)

b) \(-\frac{x}{14}=\frac{10}{-7}\)

\(\Leftrightarrow7x=140\)

\(\Leftrightarrow x=20\)

hok tốt!!

a: \(A=31x^2y^3-2xy^3+\dfrac{1}{4}x^2y^2+2\)

\(B=2xy^3+\dfrac{3}{4}x^2y^2-31x^2y^3-x^2-5\)

P=\(A+B=x^2y^2-x^2-3\)

\(A-B=62x^2y^3-4xy^3-\dfrac{1}{2}x^2y^2+x^2+7\)

b: Khi x=6 và y=-1/3 thì \(P=\left(6\cdot\dfrac{-1}{3}\right)^2-6^2-3=4-36-3=1-36=-35\)

22 tháng 12 2023

a: ĐKXĐ: \(x\notin\left\{4\right\}\)

x2-3x=0

=>x(x-3)=0

=>\(\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Thay x=0 vào A, ta được:

\(A=\dfrac{0-5}{0-4}=\dfrac{-5}{-4}=\dfrac{5}{4}\)

Thay x=3 vào A, ta được:

\(A=\dfrac{3-5}{3-4}=\dfrac{-2}{-1}=\dfrac{2}{1}=2\)

b: \(B=\dfrac{x+5}{2x}-\dfrac{x-6}{5-x}-\dfrac{2x^2-2x-50}{2x^2-10x}\)

\(=\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}-\dfrac{2x^2-2x-50}{2x\left(x-5\right)}\)

\(=\dfrac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)

\(=\dfrac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}\)

\(=\dfrac{x^2-10x+25}{2x\left(x-5\right)}=\dfrac{\left(x-5\right)^2}{2x\left(x-5\right)}=\dfrac{x-5}{2x}\)

c: Đặt P=A:B

ĐKXĐ: \(x\notin\left\{4;5;0\right\}\)

P=A:B

\(=\dfrac{x-5}{x-4}:\dfrac{x-5}{2x}\)

\(=\dfrac{x-5}{x-4}\cdot\dfrac{2x}{x-5}=\dfrac{2x}{x-4}\)

Để P là số nguyên thì \(2x⋮x-4\)

=>\(2x-8+8⋮x-4\)

=>\(8⋮x-4\)

=>\(x-4\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

=>\(x\in\left\{5;3;6;2;8;0;12;-4\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{3;6;2;8;12;-4\right\}\)

22 tháng 12 2023

Bài 3: Cho biểu thức A = x - 5/x - 4 và B = x + 5/2x - x - 6/5 - x - 2x² - 2x - 50 / 2 x^2 - 10x t

Ta có x² - 3x = 0 suy ra x x (x - 3) = 0

x = 0; x = 3

Với x = 0 suy ra A = 5/4 v

Với x = 3 suy ra A = 2

Để p đạt giá trị nguyên khi 8/x - 4 cũng phải có giá trị nguyên 28 : (x - 4)

Vậy x - 4 thuộc ước chung của 8 = -8, -4, -1, 1, 4, 8

x - 4 = 8 suy ra x = 4

x - 4 = 4 suy ra 2x = 0 loại

x - 4 = -1 suy ra x = 3 thỏa mãn

x - 4 = 1 suy ra x = 5 loại

x - 4 = 4 - 2x = 8 thỏa mãn

x - 4 = 8 suy ra x = 12 thỏa mãn

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)

\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

Thay \(x=6-2\sqrt{5}\) vào A, ta được:

\(A=\dfrac{\sqrt{5}-1-1}{\sqrt{5}-1+1}=\dfrac{\sqrt{5}-2}{\sqrt{5}}=\dfrac{5-2\sqrt{5}}{5}\)

b: Để \(A< \dfrac{1}{2}\) thì \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)

\(\Leftrightarrow2\sqrt{x}-2-\sqrt{x}-1< 0\)

\(\Leftrightarrow x< 9\)

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)