K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2021

Xét ΔMNP có : 

PM = PN ( gt ) 

⇒ ΔMNP cân.

⇒ ^PMN = ^PNM ( t/c Δcân )

P M N

Ta có: ∆MNP có PM=PN

=>∆MNP cân tại P

=> góc PMN=góc PNM (dpcm)

NV
22 tháng 3 2022

\(PN< PM< MN\Rightarrow\widehat{M}< \widehat{N}< \widehat{P}\)

26 tháng 11 2022

Xét ΔPMN có PM=PN

nen ΔPMN cân tại P

=>góc PMN=góc PNM

Xét ΔPMN có PH là phân giác

nên MH/MP=NH/NP

=>NH/6=2/4=1/2

hay NH=3(cm)

8 tháng 3 2022

H I K ? M N 4m 3m 9m

12 tháng 2 2020

Hình minh họa :)

N P M

a) Xét △MNP vuông tại P

=> PM2 + PN2 = MN2 (định li Pytago)

=> PN2 = MN2 - PM2

=> PN2 = 102 - 62

=> PN2 = 64

=> PN = 8

Vậy PN = 8

b) Xét △MNP vuông tại P

=> PM2 + PN2 = MN2 (định li Pytago)

=> PN2 = MN2 - PM2

=> PN2 = 72 - 32

=> PN2 = 40

=> PN = \(\sqrt{40}\)

Vậy PN = \(\sqrt{40}\)

c) Vì MNP cân tại P => PM = PN => PN = 2

Xét △MNP vuông tại P

=> PM2 + PN2 = MN2 (định li Pytago)

=> MN2 = 2 . 22

=> MN2 = 8

=> MN = \(\sqrt{8}\)

Vậy MN = \(\sqrt{8}\)

18 tháng 10 2020

Cách 1: 

Xét ΔMNP có : 

PM = PN ( gt ) 

⇒ ΔMNP cân.

⇒ ^PMN = ^PNM ( t/c Δcân )

Cách 2: 

Từ P kẻ PI là phân giác ^MPN

Vì ΔMPN cân (PM = PN)

=> PI là phân giác đồng thời là trung trực

=> IM = IN

Xét ΔMPI và ΔNPI có:

   PM = PN (gt)

   P1 = P2 (PI là pg)

   PI cạnh chung

=> ΔMPI = ΔNPI (c.g.c)

=> ^PMN = ^PNM ( 2 góc tg ứng)

18 tháng 10 2020

P M N A 1 2

Cách 1: Vẽ PA là tia phân giác của \(\widehat{P}\)

Xét  \(\Delta PMA\)và \(\Delta PNA\)có:

PM=PN (gt)

\(\widehat{MPA}\)=\(\widehat{NPA}\)(vì PA là tia phân giác của \(\widehat{P}\))

PA là cạnh chung

=>\(\Delta MPA=\Delta NPA\)(c.g.c)

=>\(\widehat{PMN}=\widehat{PNM}\)(hai góc tương ứng)

P M N A

Cách 2: Vẽ A là trung điểm của MN

Xét \(\Delta PMA\)và \(\Delta PNA\)có:

MP=NP (gt)

MA=NA (vì A là trung điểm của MN)

PA là cạnh chung

=>\(\Delta PMA=\Delta PNA\)(c.c.c)

=>\(\widehat{PMN}=\widehat{PNM}\)(hai góc tương ứng)

Vậy .....