Viết mười số hạng đầu của dãy Phi-bô-na-xi.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dãy số phi bô ra đi ???? lớp 6 làm j đã học đến cái này, đến cả lớp 8 nâng cao còn chưa đến nữa cơ mà !!!!
Gọi a1,a2,a3,...,a10 là 10 số liên tiếp trong dãy.
Theo tính chất của dãy Phi-bô-na-xi, ta có
a1+a2+a3+a4+a5+a6+a7+a8
=a3+a5+a7+a9
=(a2+a3)+a5+a7+a9-a2
=(a4+a5)+a7+a9-a2
=(a6+a7)+a9-a2
=(a8+a9)-a2
=a10-a2
Mà 0<a2<a8 nên a9<a10-a2<a10=>a10-a2 không là số trong dãy.
Vậy ta có điều cần chứng minh.
Gọi cấp số nhân tăng nghiêm ngặt là \(a_n\). Theo đầu bài ta có \(a_2,a_4\) là 2 nghiệm của phương trình
\(t^2-30t+144=0\Leftrightarrow\begin{cases}t=6\\t=24\end{cases}\)
\(\Leftrightarrow\begin{cases}a_2=6\\a_4=24\end{cases}\) hoặc \(\begin{cases}a_2=24\\a_4=6\end{cases}\)
\(\Leftrightarrow\begin{cases}a_1q=6\\a_1q^3=24\end{cases}\) hoặc \(\begin{cases}a_1q=24\\a_1q^3=6\end{cases}\)
\(\Leftrightarrow\begin{cases}a_1q=6\\q^2=4\end{cases}\) hoặc \(\begin{cases}a_1q=24\\q^2=\frac{6}{24}=\frac{1}{4}\end{cases}\)
\(\Leftrightarrow\begin{cases}a_1=\frac{6}{\pm2}\\q=\pm2\end{cases}\) hoặc \(\begin{cases}a_1=24\left(\pm2\right)\\q=\pm\frac{1}{2}\end{cases}\)
Do cấp số nhân tăng nghiêm ngặt, nên q>1, do vậy ta chọn \(a_1=3;q=2\)
Cho nên \(S_{10}=u_1\frac{2^{10}-1}{2-1}=3.\left(1024-1\right)=3069\)
Giao lưu:
Gọi dãy số đã co có dạng: \(U_1;U_2;U_3;U_4;U_5...U_{10}...U_n\)
đầu bài ta có hệ phương trình.
\(\left\{\begin{matrix}U_n.q=U_{\left(n+1\right)}\left(1\right)\\q>1\left(2\right)\\U_2+U_4=144\left(3\right)\\U_2.U_4=30\left(4\right)\end{matrix}\right.\)
Thế (3) vào (4) \(\Leftrightarrow U_2\left(144-U_2\right)=30\Leftrightarrow U_2^2-144U_4+30=0\Rightarrow\left[\begin{matrix}U_2=24\\U_2=6\end{matrix}\right.\)
Vì U2 và U4 có vai trò như nhau
do vậy có cắp nghiệm là hoán đổi (U2,U4)=(6,24)(*)
Từ (1) và (2) ta có(*)=> \(\left\{\begin{matrix}U_2=6\\U_4=24\end{matrix}\right.\)(**)
Từ (1) ta có: \(U_4=q.U_3=q.\left(q.U_2\right)=q^2.U_2\)(4)
Từ (**) và (4) ta có \(\frac{U_4}{U_2}=q^2=\frac{24}{6}=4\Rightarrow!q!=2\) (5)
Từ (3) và (5) => q=2
Vậy tổng 10 số hạng đầu tiên của dẫy là :\(S_{10}=2^0.3+2^1.3+3.2^2+...+3.2^8+3.2^9=3.\left(1+2+2^2+..+2^9\right)\)
\(S_{10}=3.\left(2^{10}-1\right)\)
a, Quy luật dãy số trên: mỗi chữ số cách nhau 3 đơn vị.
b, A = {2 ; 5 ; 8 ; 11 ; 14 ; 17 ; 20 ; 23 ; 26 ; 29}
c, Dựa theo quy luật tính số hạng ta có:
2 + (20-1) . 3 = 59
⇒ số hạng thứ 20 của dãy là 59
Số 10 không phải là số hạng của dãy số trên.
Vì :
Tổng các số khi cộng cho 3 của dãy số trên không có tổng nào bằng 10 vậy nên 10 không phải số hạng của dãy số trên.
Tổng của 20 số hạng đầu tiên của dãy số là:
(59 + 2) . 20 : 2 = 610
a) \(P=\left\{1;6;11;16;21;26;31;36;41;46;...\right\}\)
b) Số hạng thứ 100 của dãy số P :
\(\left(100-1\right).5+1=496\)
c) \(A=1+6+11+...+496\)
\(\Rightarrow A=\left[\left(496-1\right):5+1\right]\left(1+496\right):2\)
\(\Rightarrow A=100.497:2\)
\(\Rightarrow A=24850\)
Mười số hạng đầu của dãy Phi-bô-na-xi: 1; 1; 2; 3; 5; 8; 13; 21; 34; 55