Cho tam giác ABC, đường cao AH. Chứng minh rằng đường thẳng BC là tiếp tuyến của đường tròn (A; AH).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC, đường cao AH. Chứng minh rằng đường thẳng BC là tiếp tuyến của đường tròn (A; AH).
Ta có: BC đi qua điểm H thuộc đường tròn (A; AH)
BC ⊥ AH tại H
⇒ BC là tiếp tuyến của đường tròn (A; AH)
a: BC vuông góc AH tại H
nên BC là tiếp tuyến của (A)
b: Xét (A) có
BH,BE là tiếp tuyến
nên AB là phân giác của góc HAE(1)
Xét (A) có
CF,CH là tiếp tuyến
nên AC là phân giác của góc HAF(2)
Từ (1), (2) suy ra góc FAE=2*90=180 độ
=>F,A,E thẳng hàng
c: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
a) Vì \(BC\bot AH\Rightarrow BC\) là tiếp tuyến của (A;AH)
Vì BD,BH là tiếp tuyến \(\Rightarrow AB\) là phân giác \(\angle DAH\Rightarrow\angle DAH=2\angle BAH\)
Vì CE,CH là tiếp tuyến \(\Rightarrow AC\) là phân giác \(\angle EAH\Rightarrow\angle EAH=2\angle CAH\)
\(\Rightarrow\angle DAH+\angle EAH=2\left(\angle BAH+\angle CAH\right)=2\angle BAC=180\)
\(\Rightarrow\angle DAE=180\Rightarrow D,A,E\) thẳng hàng
b) Vì \(AB\) là phân giác \(\angle DAH\)
\(\Rightarrow\angle DAB=\angle BAH=90-\angle ABC=\angle ACB\)
\(\Rightarrow DA\) là tiếp tuyến của (BAC) nên DE là tiếp tuyến của (BAC)
mà \(\angle BAC=90\Rightarrow\) (BAC) là đường tròn đường kính (BC)
nên ta có đpcm
Tự vẽ hình nha !
a) Ta có AH vuông góc BC
H thuộc (A;AH)
=> BC là tiếp tuyến của (A;AH)
Xét (A) có DB và BH là 2 tiếp tuyến cắt nhau
=> A1 = A2
Tương tự ta chứng minh được : A3 = A4
Mà A2 + A3 = 90 độ
=> A1 + A2 + A3 + A4 = 90 độ + 90 độ = 180 độ
=> DAE = 180 độ
=> D,A,E thẳng hàng
b) Gọi M là trung điểm BC
Theo tính chất tiếp tuyến ta có :
AD vuông góc BD
AE vuông góc CE
=> BD//CE
=> BDEC là hình thang
=> MA là đường trung bình của hình thang BDEC
=> MA // BD
=> MA vuông góc DE
Xét tam giác vuông ABC có : MA = MB = MC
=> M là tâm đường tròn đường kính BC với MA là bán kính
Vậy DE là tiếp tuyến đường tròn tâm M đường kính BC
Gọi M là trung điểm của BC
Theo tính chất của tiếp tuyến, ta có:
AD ⊥ DB; AE ⊥ CE
Suy ra: BD // CE
Vậy tứ giác BDEC là hình thang
Khi đó MA là đường trung bình của hình thang BDEC
Suy ra: MA // BD ⇒ MA ⊥ DE
Trong tam giác vuông ABC ta có : MA = MB = MC
Suy ra M là tâm đường tròn đường kính BC với MA là bán kính
Vậy DE là tiếp tuyến của đường tròn tâm M đường kính BC.
Ta có: BC đi qua điểm H thuộc đường tròn (A; AH)
BC ⊥ AH tại H
⇒ BC là tiếp tuyến của đường tròn (A; AH)