Dựng hình vuông ABCD ,biết đỉnh A , điểm M thuộc cạnh BC và điểm N thuộc cạnh CD
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
8 tháng 2 2021
a) Xét tứ giác BIEM có
\(\widehat{IBM}\) và \(\widehat{IEM}\) là hai góc đối
\(\widehat{IBM}+\widehat{IEM}=180^0\)(\(90^0+90^0=180^0\))
Do đó: BIEM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
⇔B,I,E,M cùng thuộc 1 đường tròn(đpcm)
b) Ta có: ABCD là hình vuông(gt)
nên BD là tia phân giác của \(\widehat{ABC}\)(Định lí hình vuông)
⇔BE là tia phân giác của \(\widehat{ABC}\)
⇔\(\widehat{ABD}=\dfrac{\widehat{ABC}}{2}=\dfrac{90^0}{2}=45^0\)
hay \(\widehat{IBE}=45^0\)
Ta có: BIEM là tứ giác nội tiếp(cmt)
nên \(\widehat{IBE}=\widehat{IME}\)(Định lí)
mà \(\widehat{IBE}=45^0\)(cmt)
nên \(\widehat{IME}=45^0\)
Vậy: \(\widehat{IME}=45^0\)
HN
0
Phân tích: Vì ABCD là hình vuông nên:
Ta có, ba điểm A, M, N cố định nên bài toán quy về việc dựng đỉnh C. Đỉnh C là giao điểm của :
- Cung chứa góc 90 ° dựng trên đoạn thẳng MN
- Cung chứa góc 45 ° dựng trên đoạn thẳng AM
Cách dựng:
- Dựng cung chứa góc 90 ° trên đoạn MN
- Dựng cung chứa góc 45 ° trên đoạn AM
Hai cung cắt nhau tại C
- Nối CM ,CN
- kẻ AB ⊥ CM tại B , AD ⊥ CN tại D
Tứ giác ABCD là hình vuông cần dựng