K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

Giải phương trình 2011 x 2  - 2012x + 1 = 0

Ta có: a = 2011; b = -2012; c = 1

⇒ a + b + c = 0 ⇒ Phương trình có 2 nghiệm

x 1  = 1; x 2  = c/a = 1/2011

Vậy tập nghiệm của phương trình là : S = {1; 1/2011}

18 tháng 8 2023

\(x^2+xy-2012x-2013y-2014=0\)

\(\Leftrightarrow x\left(x+y\right)-2013x-2013y+x-2013-1=0\)

\(\Leftrightarrow x\left(x+y\right)-2013\left(x+y\right)+\left(x-2013\right)-1=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2013\right)+\left(x-2013\right)-1=0\)

\(\Leftrightarrow\left(x-2013\right)\left(x+y+1\right)=1\)

\(\Leftrightarrow\left(x-2013\right);\left(x+y+1\right)\in\left\{-1;1\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(2012;-2014\right);\left(2014;-2014\right)\right\}\left(x;y\inℤ\right)\)

14 tháng 10 2023

\(\sqrt{ }\)23+9999

1 tháng 3 2020

Ta có:

\(x^2-2xy+2y^2-2x+6y+5=\left(x^2-xy+y^2\right)+y^2-2\left(x-y\right)+4y+5\)

\(=\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(y^2+4y+4\right)\)

\(=\left(x-y-1\right)^2+\left(y+2\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-y=1\\y=-2\end{cases}\Rightarrow\hept{\begin{cases}x=y+1=-1\\y=-2\end{cases}}}\)

5 tháng 7 2015

Thay 2012 = x + 1

\(B=x^{2011}-\left(x+1\right).x^{2010}+\left(x+1\right).x^{2009}+...-\left(x+1\right).x^2+\left(x+1\right).x-1\)

\(=x^{2011}-x^{2011}-x^{2010}+x^{2010}+x^{2009}-...-x^3-x^2+x^2+x-1\)

\(=x-1=2011-1=2010\)

30 tháng 3 2017

Giải:

Thay \(2012=x+1\) vào biểu thức ta có:

\(\Rightarrow B=x^{2011}-\left(x+1\right).x^{2010}+\left(x+1\right).x^{2009}-...-\left(x+1\right).x^2+\left(x+1\right).x-1\)

\(=x^{2011}-x^{2011}-x^{2010}+x^{2010}+x^{2009}-...-x^2+x^2+x-1\)

\(=x-1\)

\(\Rightarrow B=2011-1=2010\)

Vậy \(B=2010\)

12 tháng 3 2018

Ta có : \(x^2+2012x+2011^{2011}-1=0\)

\(\Leftrightarrow x^2+2012x+1006^2=2011^{2011}+1+1006^2\)

\(\Rightarrow\left(x+1006\right)^2=2011^{2011}+1+1006^2\)

Giả sử x là một số nguyên thì VT là một số chính phương.

Khi đó VP cũng là số chính phương.

Lại có 20112011 có tận cùng là chữ số 1, 10062 có tận cùng là chữ số 6 nên VP có tận cùng là chữ số 8.

Lại có không một số chính phương nào có tận cùng là chữ số 8 hay VP không là số chính phương.

Vậy giả sử sai hay không tồn tại số nguyên x thỏa mãn phương trình trên.