K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

Đáp án đúng : B

23 tháng 12 2016

1) 216

15 tháng 6 2017

Ta có (x-2y)4 =[x+(-2y)]4=C4k.x4-k.(-2y)k

Hệ số của số hạng có xy3 ứng với : 4-k=1 va k=3 <=> k=3

Vậy hệ số của xy3 là : C43.(-2)3=-32

NV
11 tháng 4 2021

\(C_2^2+C_3^2+...+C_n^2=C_3^3+C_3^2+C_4^2+...+C_n^2\) (do \(C_2^2=C_3^3=1\))

\(=C_4^3+C_4^2+C_5^2+...+C_n^2=C_5^3+C_5^2+...+C_n^2\)

\(=...=C_n^3+C_n^2=C_{n+1}^3\)

Do đó:

\(2C_{n+1}^3=3A_{n+1}^2\Leftrightarrow\dfrac{2.\left(n+1\right)!}{3!.\left(n-2\right)!}=\dfrac{3.\left(n+1\right)!}{\left(n-1\right)!}\)

\(\Leftrightarrow n-1=9\Rightarrow n=10\)

\(\Rightarrow P=\left(1-x-3x^3\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(-x-3x^3\right)^k\)

\(=\sum\limits^{10}_{k=0}C_{10}^k\left(-1\right)^k\left(x+3x^3\right)^k=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i\left(-1\right)^kx^i.3^{k-i}.x^{3\left(k-i\right)}\)

\(=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i\left(-1\right)^k.3^{k-i}.x^{3k-2i}\)

Ta có: \(\left\{{}\begin{matrix}0\le i\le k\le10\\i;k\in N\\3k-2i=4\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(1;2\right);\left(4;4\right)\)

Hệ số: \(C_{10}^2C_2^1\left(-1\right)^2.3^1+C_{10}^4C_4^4.\left(-1\right)^4.3^0=...\)

11 tháng 4 2021

undefined

\(\Rightarrow he-so:\left[{}\begin{matrix}C^9_{10}C^1_9\left(-3\right)^{10-9}\left(-1\right)=270\\C^{10}_{10}C^4_{10}\left(-3\right)^{10-10}.\left(-1\right)^4=210\end{matrix}\right.\)

16 tháng 8 2017

27 tháng 4 2017

NV
5 tháng 3 2022

Xét khai triển:

\(\left(1+x\right)^n=C_n^0+C_n^1x+C_n^2x^2+...+C_n^nx^n\)

\(\Leftrightarrow x\left(1+x\right)^n=C_n^0x+C_n^1x^2+C_n^2x^3+...+C_n^nx^{n+1}\)

Đạo hàm 2 vế:

\(\left(1+x\right)^n+nx\left(1+x\right)^{n-1}=C_n^0+2C_n^1x+3C_n^2x^2+...+\left(n+1\right)C_n^nx^n\)

Thay \(x=1\)

\(\Rightarrow2^n+n.2^{n-1}=1+2C_n^1+3C_n^2+...+\left(n+1\right)C_n^n\)

\(\Rightarrow2^{n-1}\left(2+n\right)-1=111\)

\(\Rightarrow2^{n-1}\left(2+n\right)=112=2^4.7\)

\(\Rightarrow n=5\)

\(\left(x^2+\dfrac{2}{x}\right)^5=\sum\limits^5_{k=0}C_5^kx^{2k}.2^{5-k}.x^{k-5}=\sum\limits^5_{k=0}C_5^k.2^{5-k}.x^{3k-5}\)

\(3k-5=4\Rightarrow k=3\Rightarrow\) hệ số: \(C_5^3.2^2\)

NV
13 tháng 11 2021

\(C_n^0+C_n^1+C_n^2=11\)

\(\Rightarrow1+n+\dfrac{n\left(n-1\right)}{2}=11\)

\(\Leftrightarrow n^2+n-20=0\Rightarrow\left[{}\begin{matrix}n=4\\n=-5\left(loại\right)\end{matrix}\right.\)

\(\left(x^3+\dfrac{1}{x^2}\right)^4\) có SHTQ: \(C_4^k.x^{3k}.x^{-2\left(4-k\right)}=C_4^k.x^{5k-8}\)

\(5k-8=7\Rightarrow k=3\)

Hệ số: \(C_4^3=4\)

12 tháng 12 2020

15/ Mũ 4=> có 4+1=5 số hạng=> số hạng chính giữa là: \(C^2_4.3^{4-2}.x^2.2^2y^2=58x^2y^2\)

18/ \(x.x^k=x^7\Rightarrow k=6\)

\(C^6_9.3^6.2^3=489888\)

19/ \(C^7_7+C^7_8.\left(-1\right)^7+C^7_9.2^2=...\)

13 tháng 12 2020

C18 , c19 là lm sao vậy ạ ? Mk ko hiểu 2 bài này nơi

11 tháng 4 2016

Theo công thức nhị thức Niu-tơn, ta có :

\(P=C_6^0\left(x-1\right)^6+C_6^1\left(x-1\right)^5+....+C_6^kx^{2k}\left(x-1\right)^{6-k}+....+C_6^5x^{10}\left(x-1\right)+C_6^6x^{12}\)

Suy ra, khi khai triển P thành đa thức, \(x^2\) chỉ xuất hiện khi khai triển \(C_6^0\left(x-1\right)^6\) và \(C_6^1\left(x-1\right)^5\)

Hệ số của  \(x^2\) trong khai triển  \(C_6^0\left(x-1\right)^6\)  là : \(C_6^0.C_6^2\)

Hệ số của  \(x^2\) trong khai triển  \(C_6^1\left(x-1\right)^5\)  là : \(-C_6^1.C_5^0\)

Vì vậy hệ số của  \(x^2\) trong khai triển P thành đa thức là : \(C_6^0.C_6^2-C_6^1.C_5^0=9\)

 
 
 

 

NV
6 tháng 11 2019

\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)

Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn

Vậy trong khai triển trên ko có số hạng chứa \(x^8\)

b/ \(\left(1-x^2+x^4\right)^{16}\)

\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)

\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)

Hệ số của số hạng chứa \(x^{16}\):

\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)

c/ SHTQ của khai triển \(\left(1-2x\right)^5\)\(C_5^k\left(-2\right)^kx^k\)

Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)

SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)

Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)

29 tháng 11 2019

em không hiểu phần b ạ