cho p là 1 snt >3 và p+8 là snt
CMR p+16 và p+22 là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ví p là SNT > 3
=> p có dạng 3q + 1 hoặc 3p + 2
+ Xét p = 3p + 2
Ta có :
p + 4 = 3p + 2 + 4 = 3 p + 6 = 3 ( p + 2 )
Vì 3 ( p + 2 ) chia hết cho 3 nên p + 4 là hợp số
=> loại p = 3p + 2
Vậy p = 3q + 1
Ta có :
p + 8 = 3q + 1 + 8 = 3q + 9 = 3 ( q + 3 )
Ví 3 ( q + 3 ) chia hết cho 3
Mà p + 8 > 3
=> p + 8 là hợp số
Vậy p + 8 là hợp số
p là số nguyên tố lớn hơn 3 => p = 3k + 1 hoặc 3k + 2 nhưng do p + 4 là số nguyên tố nên p không có dạng 3k + 2
+ Nếu p có dạng 3k + 1 thì p + 8 có dạng : ( 3k + 1 ) + 8 = 3k + 9 chia hết cho 3 là hợp số
Vậy p + 8 là hợp số ( dpcm )
bài 3 nè : ta có a=42q+r=2*3*7q+r(q,r thuộc N,0<r<42 Vì a là SNT nên r ko chia hết cho 2,3,7 tìm các hợp số <42 loại chia hết cho 3,7 còn 25 r=25
1)
+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)
+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)
+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2
Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3
=>p+8 là hợp số (trái với giả thiết )
Vậy p phải có dạng là 3k+2
Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3
=>p+4 là hợp số (đpcm)
Vì p là số nguyên tố, p>3 nên p có một trong 2 dạng sau:
p=3k+1( k thuộc N*)
p=3k+2(k thuộc N*)
Nếu p=3k+2 ta có:
3k+2+4=3k+6=3(k+2) chia hết cho 3=> là hợp số(loại) vì p+4 là số nguyên tố
Nếu p=3k+1 ta có:
3k+1+8=3k+9=3(k+3) là hợp số phù hợp với đề bài
Vậy số nguyên tố p có dạng 3k+1 thì p+8 là hợp số.
Tick nha
Vì p là số nguyên tố, p>3 nên số p có 1 trong 2 dạng:
p=3k+1(k thuộc N*)
p=3k+2(k thuộc N*)
Thử vảo là xong
p>3 => p có dạng 3k+1; 3k+2
p = 3k+1 => 2p+7 = 2(3k+1) +7= 6k+2+7 = 6k+9 chia hết cho 3 (thỏa mãn)
p = 3k+2=> 2p+7 = 2(3k+2)+ 7 = 6k+4+7= 6k+11 (loại)
Vậy 2p+7 là hợp số