Vẽ góc vuông BAC.
Hướng dẫn:
Cách 1: Dùng thước đo góc.
Cách 2: Dùng êke
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ hình vuông cạnh 7 cm bằng thước và êke theo hướng dẫn sau:
- Vẽ đoạn thẳng CD dài 7 cm.
- Vẽ hai đường thẳng vuông góc với CD tại C và D như hình vẽ.
- Trên đường thẳng qua C lấy đoạn thẳng CB = 7cm; trên đường thẳng qua D lấy đoạn thẳng DA = 7 cm.
- Nối hai điểm A và B ta được hình vuông cần vẽ.
- Kẻ hai đường chéo của hình vuông.
- Sử dụng compa đo độ dài của hai đường chéo thấy hai đường chéo bằng nhau.
Theo định lý Pythagoras, ta có công thức: c^2 = a^2 + b^2, trong đó c là cạnh huyền (BC), a và b là hai cạnh góc vuông (MB và MC).
Với MB = 2m và cây sào cao 6m, ta có MC = 6m - 2m = 4m.
Áp dụng công thức Pythagoras, ta có: BC^2 = MB^2 + MC^2 = 2^2 + 4^2 = 4 + 16 = 20.
Do đó, khoảng cách BC là căn bậc hai của 20: BC = √20 ≈ 4.47m (làm tròn đến hai chữ số thập phân).
1) Các đỉnh: A, B, C, D
Các cạnh: AB, BC, CD, DA
Các đường chéo: AC, BD
2) Độ dài các cạnh của hình vuông đều bằng nhau
Độ dài 2 đường chéo của hình vuông bằng nhau
3) Các góc của hình vuông đều bằng nhau và bằng 90o
Cách 1: Vẽ tia AB, đặt tâm thước đo góc trùng với điểm A, vạch số 0 của thước trùng với tia AB, vẽ tia AC đi qua vạch 90 của thước.
Cách 2: Vẽ tia AB, đặt cạnh góc vuông êke trùng với tia AB sao cho đỉnh góc vuông trùng với điểm A, vạch tia AC theo cạnh góc vuông thứ hai.