Chứng minh: 4n+5 và 1+n là hai số nguyên tố cùng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt UCLN (4n+5 ; 5n+6) = d
Vì 4n+5 chia hết cho d và 5n+6 chia hết cho d
=> (4n+5) - (5n+6) chia hết cho d
=> 5(4n+5) - 4(5n+6) chia hết cho d
=> (20n + 25) - (20n + 24) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vì d =1 nên 4n+5 và 5n+6 là 2 số nguyên tố cùng nhau!
Chúc bạn học tốt!
Gọi d là ước chung lớn nhất của 4n+5 và 5n+ 6 \(\Rightarrow\)4n + 5 và 5n +6 chia hết cho d.
Vậy có : (4n +5 -5n+6 ) chia hết d.
Từ đó suy ra 1 chia hết cho d. Như vậy d chỉ có thể là 1. Các số nguyên tố cùng nhau có ước chung lớn nhất là 1=> 4n + 5 và 5n+6 là hai số nguyên tố cùng nhau.
gọi a là ước chung lớn nhất của 2n+1 và 3n+2
do đó a phải là ước của \(2\left(3n+2\right)-3\left(2n+1\right)=1\) do đó a=1
hay 2n+1 và 3n+2 là hai số nguyên tố cùng nhau.
b.gọi b là ước chung lớn nhất của 2n+3 và 4n+5
do đó b phải là ước của \(2\left(2n+3\right)-\left(4n+5\right)=1\)do đó b=1
hay 2n+3 và 4n+5 là hai số nguyên tố cùng nhau
Gọi d=ƯCLN(2n+5;4n+8)
=>4n+10-4n-8 chia hết cho d
=>2 chia hết cho d
mà 2n+5 lẻ
nên d=1
=>ĐPCM
Gọi \(d=ƯCLN\left(4n+1;5n+1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n+1⋮d\\5n+1⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}20n+5⋮d\\20n+4⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
Vậy: 4n+1 và 5n+1 là hai số nguyên tố cùng nhau
Đặt UCLN(4n + 5 ; n +1) = d
n +1 chia hết cho d
=> 4n + 4 chia hết cho d
=> [(4n + 5) -(4n + 4)] chia hết cho d
1 chia hết cho d => d = 1
Vậy (4n + 5 ; 1 + n) = 1
=> ĐPCM
giả sử UCLN(4n+5,1+n) =d
=>4+4n chia hết cho d
=>4n+5-4n-4 chia hết cho d
=>1 chia hết cho d
UCLN(4n+5,1+n)=1
=>đpcm