Chứng minh rằng:
S=22000+22001+...+22005 chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = (21+22)+(23+24)+...+(299+2100)
S = 2.(1+2)+23.(1+2)+...+299.(1+2)
S = 2.3+23.3+...+299.3
S = 3.(2+23+...+299)
=> S chia hết cho 3
S = (21+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)
S = 2.(1+2+4+16)+25.(1+2+4+16)+...+297.(1+2+4+16)
S = 2.15+25.15+...+297.15
S = 15.(2+25+...+297)
=> S chia hết cho 15
Ta có :
S = 5 + 52 +53 +54 +.... + 5100 có (100 - 1) : 1 + 1 = 100 số hạng
S = (5 + 52) + (53 + 54) + ....... + (599 + 5100)
S = 5 . (1 + 5) + 53 . (1 + 5) + .... + 599 . (1 + 5)
S = 5 . 6 + 53 . 6 + ..... + 599 . 6
S = 6 . (5 + 53 + ..... + 599)
Vì 6 chia hết cho 6 nên S chia hết cho 6 (ĐPCM)
Ủng hộ mk nha !! ^_^
\(S=5+5^2+5^3+...+5^{100}\)
\(=\left(5+5^2\right)+\left(5^3+5^4\right)+.....+\left(5^{99}+5^{100}\right)\)
\(=5\left(1+5\right)+5^3\left(1+5\right)+......+5^{99}\left(1+5\right)\)
\(=\left(1+5\right)\left(5+5^3+.....+5^{99}\right)\)
\(=6\left(5+5^3+....+5^{99}\right)\)
\(S=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{88}\left(1+3+3^2\right)\)
\(=3.13+3^4.13+...+3^{88}.13\)
\(=13\left(3+3^4+...+3^{88}\right)\) chia hết cho \(13\)
\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)
\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)
s=2+2^2+2^3+.....+2^100
s=2.(1+2+2^2+2^3)+......+2^97.(1+2+2^2+2^3)
s=2.15+....+2^97.15
s=15.(2+....+2^97)
=> s chia het cho 15
a=3+3^2+3^3+....+3^20
a=3.(1+3)+......+3^19.(1+3)
a=3.4+.....+3^19.4
a=4.(3+.....+3^19)
vay a chia het cho 4
S=(1+2)+(2^2+2^3)+(2^4+2^5)+....+(2^99+2^100)
S=3+3.2^2+3.2^4+.....+3.2^99
S=3.(2^2+2^4+.....+2^99)
Vì 3 chia hết 3=>3.(2^2+2^4+....+2^99)
=>S chia hết 3
2S=2+2^2+2^3+2^4+.....+2^101
2S-S=(2+2^2+2^3+2^4+....+2^101)-(1+2+2^2+2^3+2^4+....+2^100)
S=2^101-1
S+1=2^101-1+1=2^101
=>x=101
a/
\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)
\(=\left(98a+7b\right)+3\left(a+b\right)\)
\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)
\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)
b/ xem lại đề bài
Đặt A=22+23+..+22005
2A=23+24+..+22006
suy ra 2A-A=(23+24+..+22006) - (22+23+..+22005)
A=22006-22
suy ra C=4+22006-4
C=22006 .Là lũy thừa của 2 (đpcm)
\(S=2^{2000}+2^{2001}+2^{2002}+2^{2003}+2^{2004}+2^{2005}\)
\(S=\left(2^{2000}+2^{2001}+2^{2002}\right)+\left(2^{2003}+2^{2004}+2^{2005}\right)\)
\(S=\left(2^{2000}.1+2^{2000}.2+2^{2000}.4\right)+\left(2^{2003}.1+2^{2003}.2+3^{2003}.4\right)\)
\(S=2^{2000}.\left(1+2+4\right)+2^{2003}.\left(1+2+4\right)\)\(S=2^{2000}.7+2^{2003}.7=7.\left(2^{2000}+2^{2003}\right)\)
Vậy S chia hết cho 7
Ta có
S= 2^2000+2^2001+2^2002+2^2003+2^2004+2^2005
S=(2^2000+2^2001+2^2002)+(2^2003+2^2004+2^2005)
S=2^2000(1+2+2^2)+2^2003(1+2+2^2)
S=2^2000(1+2+4)+2^2003(1+2+4)
S=2^2000*7+2^2003*7
S=7(2^2000+2^2003)
Ta thấy 7(2^2000+2^2003) chia hết cho 7 nên Schia hết cho 7
Vậy S chia hết cho 7 (đpcm) tick nha bạn