K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2019

Đặt un = 13n – 1

+ Với n = 1 thì u1 = 13 – 1 = 12 chia hết 6

+ Giả sử: uk = 13k – 1 chia hết cho 6.

⇒ uk + 1 = 13k + 1 – 1

              = 13k+1 + 13k – 13k – 1

              = 13k(13 – 1) + 13k – 1

              = 12.13k + uk.

Mà 12.13k ⋮ 6; uk ⋮ 6.

⇒ uk + 1 ⋮ 6.

⇒ un ⋮ 6 với mọi n ∈ N.

hay 13n – 1 ⋮ 6 với mọi n ∈ N.

5 tháng 10 2019

hello minh anh ak 

5 tháng 10 2019

bitch

5 tháng 8 2019

a)

Ta có: 13n+1 - 13n

= 13n . 13 - 13n

= 13n (13 - 1)

= 13n . 12 \(⋮\) 12

Vậy: 13n+1 - 13n \(⋮\) 12 vs mọi số tự nhiên n

b)

Ta có: n3 - n = n (n2 - 1)

= (n - 1).n.(n+1) \(⋮\) 6 (vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 6)

5 tháng 8 2019

Cảm ơn bạn nhiều <3

AH
Akai Haruma
Giáo viên
10 tháng 12 2023

Lời giải:
Vì $n, n+1$ là hai số tự nhiên liên tiếp nên trong đó sẽ tồn tại 1 số chẵn và 1 số lẻ.

$\Rightarrow n(n+1)\vdots 2$

$\Rightarrow n(n+1)(13n+17)\vdots 2(*)$

Mặt khác:
Nếu $n$ chia hết cho 3 thì $n(n+1)(13n+7)\vdots 3$

Nếu $n$ chia 3 dư $1$: Đặt $n=3k+1$ thì:

$13n+17=13(3k+1)+17=39k+30=3(13k+10)\vdots 3$

$\Rightarrow n(n+10)(13n+17)\vdots 3$

Nếu $n$ chia 3 dư $2$. Đặt $n=3k+2$ thì:

$n+1=3k+3=3(k+1)\vdots 3$

$\Rightarrow n(n+1)(13n+17)\vdots 3$

Vậy $n(n+1)(13n+17)\vdots 3$ với mọi $n$ tự nhiên $(**)$

Từ $(*); (**)\Rightarrow n(n+1)(13n+17)\vdots 6$.

30 tháng 3 2018

1 tháng 1 2016

có biết đâu mà giúp, mong bạn thông cảm cho. Nhớ tick cho mình với

27 tháng 1 2018

Câu a)

Ta có: \(n\left(n+1\right)=n^2+n\)

TH1: Khi n là số chẵn 

Khi n là số chẵn thì \(n^2\)cũng là số chẵn

Suy ra \(n^2+n\)chia hết cho 2

TH2: khi n là số lẻ

Khi n là số lẻ thì \(n^2\)cũng là số lẻ

Suy ra \(n^2+n\)chia hết cho 2

Vậy .................

Cấu dưới tương tự

Làm biếng :3

9 tháng 4 2017

a) Với n = 1, ta có:

13n – 1 = 131 – 1 = 12 ⋮ 6

Giả sử: 13k - 1 ⋮ 6 với mọi k ≥ 1

Ta chứng minh: 13k+1 – 1 chia hết cho 6

Thật vậy:

13k+1 – 1 = 13k+1 – 13k+ 13k -1 = 12.13k +13k – 1

Vì : 12.13k ⋮ 6 và 13k – 1 ⋮ 6

Nên : 13k+1 – 1 ⋮ 6

Vậy 13n -1 chia hết cho 6

b) Với n = 1, ta có: 3n3 + 15n = 18 ⋮ 9

Giả sử: 3(k + 1)3 + 15(k + 1) Ta chứng minh: 3(k + 1)3 + 15(k + 1) ⋮ 9

Thật vậy:

3(k + 1)3 + 15(k + 1) = 3. (k3 + 3k2 + 3k + 1) + 15(k + 1)

= 3k3 + 9k2 + 9k + 15k + 18

= 3k3 + 15k + 9(k2 + k + 2)

Vì 3(k + 1)3 + 15(k + 1) (giả thiết quy nạp) và 9(k2 + k + 2) ⋮ 9

Nên: 3(k + 1)3 + 15(k + 1) ⋮ 9

Vậy: 3n3 + 15n chia hết cho 9 với mọi n ∈ N*


14 tháng 8 2015

a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp

 => m(m+1)(m-1) chia hết cho 3 và 2

Mà (3,2) = 1

=> m(m+1)(m-1) chia hết cho 6

=> m^3 - m  chia hết cho 6  V m thuộc Z

b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8

=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z

Tick nha pham thuy trang

 

14 tháng 8 2015

a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6

mk chỉ biết có thế thôi