Các điểm A'(-4; 1), B'(2; 4), C'(2; -2) lần lượt là trung điểm các cạnh BC, CA và AB của tam giác ABC. Tính tọa độ các đỉnh của tam giác ABC. Chứng minh rằng trọng tâm của tam giác ABC và A'B'C' trùng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D
a/ Có 4 đường thẳng, gồm: AB, AC, AD và BD=BC=CD
b/ Có tất cả 3 tam giác gồm: ABC, ABD, ACD
Lần lượt thay tọa độ các điểm M, O, P, Q, A vào hàm số f ( x ) = - 1 4 x ta được:
+) Với M (0; 4), thay x = 0; y = 4 ta được 4 = - 1 4 .0 ⇔ 4 = 0 (vô lý) nên M ∉ (C)
+) Với O (0; 0), thay x = 0 ; y = 0 ta được 0 = - 1 4 .0 ⇔ 0 = 0 (luôn đúng) nên O ∈ (C)
+) Với P (4; −1), thay x = 4 ; y = − 1 ta được −1 = - 1 4 . 4 ⇔ 1 = −1 (luôn đúng) nên P ∈ (C)
+) Với Q (−4; 1), thay x = − 4 ; y = 1 ta được 1 = - 1 4 .(−4) ⇔ 1 = 1 (luôn đúng) nên Q ∈ (C)
+) Với A (8; −2), thay x = 8 ; y = − 2 ta được −2 = - 1 4 .8 ⇔ −2 = −2 (luôn đúng) nên A ∈
Đáp án cần chọn là: A
Câu 1: \(9^6\cdot7-3^{12}\cdot4\)
\(=3^{2^6}\cdot7-3^{12}\cdot4\)
\(=3^{12}\cdot7-3^{12}\cdot4\)
\(=3^{12}\left(7-4\right)\)
\(=3^{12}\cdot3\)
\(=3^{13}\)
Câu 2:
a) Số đường thẳng đi qua 2 điểm là: \(3+2+1=6\left(đường\right)\)
b) Các đường thẳng đó là: \(AB;AC;AD;BC;BD;CD\)
A’ là trung điểm của BC
B’ là trung điểm của AC
C’ là trung điểm của BA
Gọi G là trọng tâm ΔABC và G’ là trọng tâm ΔA’B’C’
Ta có :
Vậy G ≡ G’ (đpcm)