K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2016

 a = (2m - 1)^2 = 4m^2 - 4m + 1 
b = (2m + 1)^2 = 4m^2 + 4m + 1 
=> A = (a - 1)(b - 1) = 4m(m -1).4m(m +1) 
m(m -1) và m(m+1) đều chia hết cho 2 => A chia hết cho 4.2.4.2 = 64 
vì: A chứa m(m-1)(m+1) là tích 3 số nguyên liên tiếp chia hết cho 3 
3 và 64 nguyên tố cùng nhau => A chia hết cho 64.3 = 192

16 tháng 5 2019

Đặt \(A=ab-a-b+1=\left(ab-a\right)-\left(b-1\right)=a\left(b-1\right)-\left(b-1\right)=\left(a-1\right)\left(b-1\right)\)

Mà a,b là bình phương hai số lẻ liên tiếp nên

\(\Rightarrow\hept{\begin{cases}a=\left(2k-1\right)^2\\b=\left(2k+1\right)^2\end{cases}}\)

\(\Rightarrow A=\left[\left(2k-1\right)^2-1\right]\left[\left(2k+1\right)^2-1\right]\)

\(\Rightarrow A=\left(4k^2-4k\right)\left(4k^2+4k\right)\)

\(\Rightarrow A=16k^4-16k^2\)

\(\Rightarrow A=16k^2\left(k^2-1\right)\)

\(\Rightarrow A=16k\left(k-1\right)k\left(k+1\right)\)

Ta thấy:  \(A⋮16\)

Mà \(\left(k-1\right)k\left(k+1\right)\)là tích của ba số liên tiếp

\(\Rightarrow A⋮3\)

Vậy \(A⋮48\left(48=16.3\right)\)

Hay \(\left(ab-a-b+1\right)⋮48\)

15 tháng 10 2017

a. goi ba so tu nhien chan do la a nhan 2, a nhan 2 +2,a nhan 2 +4

theo bai ra ta co : tong ba so chan lien tiep la : a*2+a*2+2+a*2+4 = ( a*2+a*2+a*2) + (2+4)= a*6+6=6*(a+1)

vi 6 chia het cho 6 nen 6*(a+1)chia het cho 6

15 tháng 10 2017

cac phan con lai tuong tu

23 tháng 7 2015

a. Gọi 3 số đó là a , a+1, a+2

Ta có: a+ a+1 + a+2 = 3a +3

3 chia hết cho 3 => 3a chia hết cho 3

=> 3a+3 chia hết cho 3

=> Tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3

a. Gọi 4 số đó là a , a+1, a+2 ,a+4

Ta có: a+ a+1 + a+2 +a+4 = 4a +4

4 chia hết cho 4 => 4a chia hết cho 4

=> 4 a+4 chia hết cho 4

=> Tổng của 4 số tự nhiên liên tiếp luôn chia hết cho 4

10 tháng 7 2019

ban tren lam sai roi kia vi ho noi khong chia het cho 4 ma

16 tháng 7 2016

b)goi 3 số tự nhiên la a, a+1, a+2 
tổng 3 số la 3a+3 chia hết cho 3

a)Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N ) 
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1 
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3 
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3 
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3 

17 tháng 7 2016

Ban co chac chan dung ko vay

20 tháng 10 2016

Hai số lẻ liên tiếp là (2k + 1) và (2k + 3) ta có

(2k + 3)2 - (2k + 1)= 2(4k + 4) = 8(k + 1)

Vậy nó chia hết cho 8

9 tháng 11 2015

a) Có dạng: 2k + 2k + 2 + 2k + 4 = 6k + 6 = 6(k+1)

chia hết cho 6 (dpcm)

b) Có dạng: 2k + 1 + 2k + 3 + 2k + 5 = 6k + 9 = 2(3k + 4) + 1

không chia hết cho 6 (dpcm) 

9 tháng 11 2015

Bênh vực người yêu quá cơ Anh yêu em Choco pie