Tìm số nguyên dương n sao cho: C n 0 + 2 C n 1 + 4 C n 2 + . . . + 2 n C n n = 243
A. 4
B. 11
C. 12
D. 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+2\right)^n=C^0_n\cdot x^n+C^1_n\cdot x^{n-1}\cdot2+...+C^n_n\cdot2^n\)(1)
Tổng các hệ số trong khai triển (1) là;
(1+2)^n=3^n
=>3^n=243
=>n=5
a, Bài giải
Ta có : \(\frac{\left(n+1\right)\left(n+2\right)}{n}=\frac{n\left(n+1\right)+2\left(n+1\right)}{n}=\frac{n^2+n+2n+2}{n}=\frac{n\left(n+1+2\right)+2}{n}\)
\(=\frac{n\left(n+1+2\right)}{n}+\frac{2}{n}=n+1+2+\frac{2}{n}\)
\(\left(n+1\right)\left(n+2\right)\text{ }⋮\text{ }n\text{ khi }2\text{ }⋮\text{ }n\)
\(\Rightarrow\text{ }n\inƯ\left(2\right)=\left\{\pm1\text{ ; }\pm2\right\}\)
a) \(\dfrac{81}{\left(-3\right)^n}=-243\)
\(\dfrac{\left(-3\right)^4}{\left(-3\right)^n}=\left(-3\right)^5\)
\(\left(-3\right)^n=\dfrac{\left(-3\right)^4}{\left(-3\right)^5}=\left(-3\right)^{-1}\)
n = -1
Vậy n = -1
b) \(\dfrac{25}{5^n}=5\)
\(\dfrac{5^2}{5^n}=5^1\)
\(5^n=\dfrac{5^2}{5^1}=5^1\)
n = 1
Vậy n = 1
c) \(\dfrac{1}{2}\cdot2^n+4\cdot2^n=9\cdot2^5\)
\(2^{n-1}+4\cdot2^{n-1}\cdot2=9\cdot2^5\)
\(2^{n-1}+8\cdot2^{n-1}=9\cdot2^5\)
\(\left(8+1\right)\cdot2^{n-1}=9\cdot2^5\)
\(9\cdot2^{n-1}=9\cdot2^5\)
\(2^{n-1}=2^5\cdot\dfrac{9}{9}=2^5\)
n - 1 = 5
n = 5 + 1 = 6
Vậy n = 6
a) 81/(-3)ⁿ = -243
(-3)ⁿ = 81 : (-243)
(-3)ⁿ = -1/3
n = -1
b) 25/5ⁿ = 5
5ⁿ = 25 : 5
5ⁿ = 5
n = 1
c) 1/2 . 2ⁿ + 4 . 2ⁿ = 9 . 2⁵
2ⁿ . (1/2 + 4) = 9 . 32
2ⁿ . 9/2 = 288
2ⁿ = 288 : 9/2
2ⁿ = 64
2ⁿ = 2⁶
n = 6
Chọn đáp án D