Cho \(x,y\) là các số thỏa mãn \(\text{ | }x-2\text{ | }+\left(y+1\right)^2=0\). Khi đó \(x+y=\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(B\ge\dfrac{\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)^2}{2}\) \(=\dfrac{\left(1+\dfrac{1}{xy}\right)^2}{2}\)
Lại có \(xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{1}{4}\)
\(\Rightarrow B\ge\dfrac{\left(1+4\right)^2}{2}=\dfrac{25}{2}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Vậy GTNN của B là \(\dfrac{25}{2}\) khi \(x=y=\dfrac{1}{2}\)
Cách của mình dài ,bạn nào có cách khác ngắn gọn hơn thì chỉ cho mình với ạ. Cảm ơn
Trước hết ta chứng minh BĐT phụ sau: \(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a+x\right)^2+\left(b+y\right)^2}.\)(*)
Thật vậy: \(ax+by\le\sqrt{\left(ax+by\right)^2}\le\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\)(BĐT bunhiacopxi)
\(\Leftrightarrow a^2+b^2+x^2+y^2+2\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\ge a^2+b^2+x^2+y^2+2\left(ax+by\right)\)
\(\Leftrightarrow\left(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\right)^2\ge\left(a+x\right)^2+\left(b+y\right)^2\)
\(\Leftrightarrow\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\ge\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\). BĐT đã được chứng minh
Xét : \(\left(x+\sqrt{1+x^2}\right)\left(x-\sqrt{1+x^2}\right)=x^2-\left(1+x^2\right)=-1.\)
Theo giả thết : \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2018\)
\(\Rightarrow2018\left(x-\sqrt{1+x^2}\right)=-\left(y+\sqrt{1+y^2}\right).\)
\(\Leftrightarrow2018x+y=2018\sqrt{1+x^2}-\sqrt{1+y^2}.\)(1)
Tương tự:
Xét:\(\left(y+\sqrt{1+y^2}\right)\left(y-\sqrt{1+y^2}\right)=y^2-\left(1+y^2\right)=-1\)
Theo giả thiết : \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=2018\)
\(\Rightarrow2018\left(y-\sqrt{1+y^2}\right)=-\left(x+\sqrt{1+x^2}\right)\)
\(\Leftrightarrow x+2018y=-\sqrt{1+x^2}+2018\sqrt{1+y^2}\)(2)
Cộng các vế của (1) và (2) lại ta được
\(2019\left(x+y\right)=2017\left(\sqrt{1+x^2}+\sqrt{1+y^2}\right)\)
Khi đó áp dụng bất đẳng thức (*) ta có;
\(2019\left(x+y\right)=2017\left(\sqrt{1^2+x^2}+\sqrt{1^2+y^2}\right)\ge2017\left(\sqrt{\left(1+1\right)^2+\left(x+y\right)^2}\right)\)
\(\Rightarrow2019\left(x+y\right)\ge2017\sqrt{4+\left(x+y\right)^2}\)
Đặt \(x+y=a>0\)ta có;
\(2019a\ge2017\sqrt{4+a^2}\Leftrightarrow2019^2a^2\ge2017^2a^2+2017^2.4\)
\(\Leftrightarrow\left(2019^2-2017^2\right)a^2\ge\left(2017.2\right)^2\Leftrightarrow a^2\ge\frac{2017^2.2.2}{2.4036}\Leftrightarrow a^2\ge\frac{2017^2}{2018}\)
\(\Rightarrow a\ge\frac{2017}{\sqrt{2018}}\Rightarrow x+y\ge\frac{2017}{\sqrt{2018}}.\)
Vậy giá trị nhỏ nhất của biểu thức P=x+y là \(\frac{2017}{\sqrt{2018}}\)
Dấu '=' xảy ra khi \(x=y=\frac{2017}{2\sqrt{2018}}.\)
bn đào thu hà k cần cm bdt phụ đâu đấy là bdt mincopski đc dùng luôn
lại bị trùng rồi quỳnh ơi , https://olm.vn/hoi-dap/detail/76355556031.html
Câu hỏi của Con Heo - Toán lớp 8 - Học trực tuyến OLM
(3x-1)2+|x-2y| = 0 nên (3x-1)2 và |x-2y| đối nhau mà 2 số đều không âm nên chỉ có thể (3x-1)2 = |x-2y| = 0
=> 3x-1 = 0 ; x-2y = 0 => 3x = 1 => x = 1/3 = 2y => y = 1/6 => 3x+12y = 1 + 12.1/6 = 1 + 2 = 3
\(\text{Vì }\left|x-2\right|\ge0;\left(y+1\right)^2\ge0\)
\(\text{Mà }\left|x-2\right|+\left(y+1\right)^2=0\)
\(\Rightarrow x-2=0\text{ và }y+1=0\)
\(\Rightarrow x=2\text{ và }y=-1\)
Khi đó \(x+y=2+\left(-1\right)=2-1=1\).