K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2019

Điều kiện xác định của phân thức: x ≠ 0

Tính giá trị của phân thức tại một giá trị của biến cực hay | Toán lớp 8

Với Tính giá trị của phân thức tại một giá trị của biến cực hay | Toán lớp 8 thỏa mãn ĐKXĐ của biến nên thay Tính giá trị của phân thức tại một giá trị của biến cực hay | Toán lớp 8 vào phân thức Tính giá trị của phân thức tại một giá trị của biến cực hay | Toán lớp 8 ta được:

Tính giá trị của phân thức tại một giá trị của biến cực hay | Toán lớp 8

26 tháng 1 2022

1. ĐKXĐ: \(x\ne\pm1\)

 

2. \(A=\left(\dfrac{x+1}{x-1}-\dfrac{x+3}{x+1}\right)\cdot\dfrac{x+1}{2}\)

\(=\dfrac{\left(x+1\right)^2-\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{x^2+2x+1-x^2+4x-3}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{6x-2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{2\left(x-3\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x-3}{x-1}\)

 

3. Tại x = 5, A có giá trị là:

\(\dfrac{5-3}{5-1}=\dfrac{1}{2}\)

 

4. \(A=\dfrac{x-3}{x-1}\) \(=\dfrac{x-1-3}{x-1}=1-\dfrac{3}{x-1}\)

Để A nguyên => \(3⋮\left(x-1\right)\) hay \(\left(x-1\right)\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=1\\x-1=-1\\x-1=3\\x-1=-3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\left(tmđk\right)\\x=0\left(tmđk\right)\\x=4\left(tmđk\right)\\x=-2\left(tmđk\right)\end{matrix}\right.\)

Vậy: A nguyên khi \(x=\left\{2;0;4;-2\right\}\)

 

10 tháng 3 2021

Bài 1 : 

\(N=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Ta có : \(x+y+z=0\Rightarrow x+y=-z;y+z=-x;x+z=-y\)

hay \(-z.\left(-x\right)\left(-y\right)=-zxy\)

mà \(xyz=2\Rightarrow-xyz=-2\)

hay N nhận giá trị -2 

Bài 2 : 

\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)Đặt \(a=10k;b=3k\)

hay \(\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)

hay biểu thức trên nhận giá trị là 24 

c, Ta có : \(a-b=3\Rightarrow a=3+b\)

hay \(\frac{3+b-8}{b-5}-\frac{4\left(3+b\right)-b}{3\left(3+b\right)+3}=\frac{-5+b}{b-5}-\frac{12+4b-b}{9+3b+3}\)

\(=\frac{-5+b}{b-5}-\frac{12+3b}{6+3b}\)quy đồng lên rút gọn, đơn giản rồi 

10 tháng 3 2021

1.Ta có:\(x+y+z=0\)

\(\Rightarrow\hept{\begin{cases}x+y=-z\\y+z=-x\\x+z=-y\end{cases}}\)

\(\Rightarrow N=\left(x+y\right)\left(y+z\right)\left(x+z\right)=\left(-z\right)\left(-x\right)\left(-y\right)=-2\)

2.Ta có:\(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)

Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow a=10k;b=3k\)

Ta có:\(A=\frac{3a-2b}{a-3b}=\frac{3.10k-2.3k}{10k-3.3k}=\frac{30k-6k}{10k-9k}=\frac{k\left(30-6\right)}{k\left(10-9\right)}=24\)

Vậy....

11 tháng 12 2023

a: 

ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

b: \(A=\left(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(1-\dfrac{x-3}{x+1}\right)\)

\(=\left(\dfrac{x-2}{2\left(x-1\right)}+\dfrac{3}{2\left(x-1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right):\dfrac{x+1-x+3}{x+1}\)

\(=\dfrac{\left(x-2\right)\left(x+1\right)+3\left(x+1\right)-\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{2}\)

\(=\dfrac{x^2-x-2+3x+3-x^2-2x+3}{2\left(x-1\right)}\cdot\dfrac{1}{2}\)

\(=\dfrac{-2}{4\left(x-1\right)}=\dfrac{-1}{2\left(x-1\right)}\)

Khi x=2005 thì \(A=\dfrac{-1}{2\cdot\left(2005-1\right)}=-\dfrac{1}{4008}\)

Vì x=1 không thỏa mãn ĐKXĐ

nên khi x=1 thì A không có giá trị

c: Để A=-1002 thì \(\dfrac{-1}{2\left(x-1\right)}=-1002\)

=>\(2\left(x-1\right)=\dfrac{1}{1002}\)

=>\(x-1=\dfrac{1}{2004}\)

=>\(x=\dfrac{1}{2004}+1=\dfrac{2005}{2004}\left(nhận\right)\)

a: Ta có: |x+4|=1

=>x+4=1 hoặc x+4=-1

=>x=-3(loại) hoặc x=-5

Khi x=-5 thì \(A=\dfrac{\left(-5\right)^2-5}{3\left(-5+3\right)}=\dfrac{20}{3\cdot\left(-2\right)}=\dfrac{-10}{3}\)

b: \(B=\dfrac{x-1+x+1-3+x}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x-3}{\left(x-1\right)\left(x+1\right)}=\dfrac{3}{x+1}\)

a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

b) Ta có: \(B=\left(\dfrac{x-2}{2x-2}+\dfrac{3}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(1-\dfrac{x-3}{x+1}\right)\)

\(=\left(\dfrac{x-1}{2x-2}-\dfrac{x+3}{2x+2}\right):\left(\dfrac{x+1-x-3}{x+1}\right)\)

\(=\left(\dfrac{\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{-2}{x+1}\)

\(=\dfrac{x^2-1-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x+1}{-2}\)

\(=\dfrac{-2x+2}{2\left(x-1\right)}\cdot\dfrac{-1}{2}\)

\(=\dfrac{-2\left(x-1\right)}{2\left(x-1\right)}\cdot\dfrac{-1}{2}\)

\(=\dfrac{1}{2}\)

Vậy: Khi x=2005 thì \(B=\dfrac{1}{2}\)

25 tháng 2 2021

a/

Để biểu thức được xác định

\(=>\left\{{}\begin{matrix}2x-2\ne0\\2x+2\ne0\\x+1\ne0\end{matrix}\right.\)

\(\odot2x-2\ne0\)

\(2x\ne2\)

\(x\ne1\)

\(\odot2x+2\ne0\)

\(2x\ne-2\)

\(x\ne-1\)

\(\odot x+1\ne0\)

\(x\ne-1\)

Vậy điều kiện xác định của bt là: \(x\ne-1;x\ne\pm2\)

15 tháng 12 2023

a: \(A=\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)

\(=\left(1-\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)\left(\dfrac{-\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}-1\right)\)

\(=\left(1-\sqrt{5}\right)\left(-1-\sqrt{5}\right)\)

\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)=5-1=4\)

b: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)

\(B=\dfrac{1}{2\sqrt{x}-2}-\dfrac{1}{2\sqrt{x}+2}+\dfrac{\sqrt{x}}{1-x}\)

\(=\dfrac{1}{2\left(\sqrt{x}-1\right)}-\dfrac{1}{2\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\)

\(=\dfrac{-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=-\dfrac{2}{\sqrt{x}+1}\)

c: Khi x=9 thì \(B=\dfrac{-2}{\sqrt{9}+1}=\dfrac{-2}{3+1}=-\dfrac{2}{4}=-\dfrac{1}{2}\)

d: |B|=A

=>\(\left|-\dfrac{2}{\sqrt{x}+1}\right|=4\)

=>\(\dfrac{2}{\sqrt{x}+1}=4\) hoặc \(\dfrac{2}{\sqrt{x}+1}=-4\)

=>\(\sqrt{x}+1=\dfrac{1}{2}\) hoặc \(\sqrt{x}+1=-\dfrac{1}{2}\)

=>\(\sqrt{x}=-\dfrac{1}{2}\)(loại) hoặc \(\sqrt{x}=-\dfrac{3}{2}\)(loại)

1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)a)rút gọn A và tính A khi x=2b)Rút gọn B và tìm x để B=2/5c)tìm x thuộc Z  để (A,B)thuộc Z 2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3a)rút gọn biểu thức A   b) tính giá trị biểu thức A khi /x-5/=2c)tìm x để A>03)B= x+2/x+3 - 5/x^2+x-6 - 1/2-xa)rút gọn biểu thức B    b)tìm x để B=3/2   c) tìm giá trị nguyên của x để B có giả trị...
Đọc tiếp

1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z  để (A,B)thuộc Z
 
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A   b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0

3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B    b)tìm x để B=3/2   c) tìm giá trị nguyên của x để B có giả trị nguyên

4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C    b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1         d) tìm giá trị nhỏ nhất của biểu thức C

5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D 
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
 

2
7 tháng 12 2020

bạn viết thế này khó nhìn quá

26 tháng 11 2021

nhìn hơi đau mắt nhá bạn hoa mắt quá

10 tháng 12 2021

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)