Số giá trị nguyên của x thỏa mãn \(\frac{x+50}{x-60}\)<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: x khác 60
Chia làm 2 TH:
_TH1: Tử >0 , mẫu <0 <=> -50<x<60
_TH2: Tử <0 , mẫu >0 (vô nghiệm)
Tính số số hạng=> kq=109
Ta co:
x.(4+ x) = -3
=> x.4+x.x = -3
=> 2.x(2+1) = -3
=> 2.x.3 =-3
=> 2.x =-3:3
=>2.x =-1
=>x =-1:2
Vay x = -1:2
Vì/x/>=0
5>=/x/>=0
/x/€{0;1;2;3;4;5}(do x €Z)
x€{-5;-4;-3;-2;-1;0;1;2;3;4;5}
Vậy x€{-5;-4;-3;-2;-1;0;1;2;3;4;5}
a) x4 = (6,25)2 = [(2,5)2]2 = (2,5)4 = (-2,5)4
Mà x < 0 => x = -2,5
b) x2 = 24 = (22)2 = 42 = (-4)2
Mà x < 0 => x = -4
Cho số thực x thỏa mãn \(^{x^2-4x+1=0}\)Tính giá trị của biểu thức \(G=\frac{x^2}{x^4+1}\)
\(x^2-4x+1=0\)
( a = 1 ; b = -4 ; c =1 )
\(\Delta=b^2-4ac\)
\(=\left(-4\right)^2-4.1.1\)
\(=16-4\)
\(=12>0\)
\(\sqrt{\Delta}=\sqrt{12}=2\sqrt{3}\)
Vì \(\Delta>0\) nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{4+2\sqrt{3}}{2.1}=2+\sqrt{3}\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-2\sqrt{3}}{2.1}=2-\sqrt{3}\)
Ta có : \(G=\frac{x^2}{x^4+1}\)
. Thay \(x_1\) vào ta được : \(G=\frac{\left(2+\sqrt{3}\right)^2}{\left(2+\sqrt{3}\right)^4+1}\)
\(=\frac{4+4\sqrt{3}+3}{\left(4+4\sqrt{3}+3\right)^2+1}\)
\(=\frac{4\sqrt{3}+7}{\left(4\sqrt{3}+7\right)^2+1}\)
\(=\frac{4\sqrt{3}+7}{48+56\sqrt{3}+49+1}\)
\(=\frac{4\sqrt{3}+7}{56\sqrt{3}+98}\)
\(=\frac{4\sqrt{3}+7}{14.\left(4\sqrt{3}+7\right)}\)
\(=\frac{1}{14}\)
.Thay \(x_2\) vào ta được : \(G=\frac{\left(2-\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)^4+1}\)
\(=\frac{4-4\sqrt{3}+3}{\left(4-4\sqrt{3}+3\right)^2+1}\)
\(=\frac{7-4\sqrt{3}}{\left(7-4\sqrt{3}\right)^2+1}\)
\(=\frac{7-4\sqrt{3}}{49-56\sqrt{3}+48+1}\)
\(=\frac{7-4\sqrt{3}}{98-56\sqrt{3}}\)
\(=\frac{7-4\sqrt{3}}{14.\left(7-4\sqrt{3}\right)}=\frac{1}{14}\)
Vậy giá trị của biểu thức là 1/14
SUY RA [(x-60)+110]:(x-60)<0
1+110:(x-60)<0
110:(x-60)<-1
60-x>110
x<-50
TÍCH ĐÚNG CHO MÌNH NHA!!!
(x - 60) \(\inƯ\left(110\right)\)