K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2015

Ta có 2012 chia cho 3 dư 2 => 2012^2 chia cko 3 dư 4

2013 chia cko 3 dư 0 => 2013^2 chia cko 3 dư 0

=> 2012^2x2013^2 chia cko 3 dư 0

=> A = 2012^2 + 2012^2x2013^2 + 2013^2 chia cko 3 dư 4 mak 4 chia 3 dư 1 suy ra A chia cko 3 dư 1

Mà số chính phương khi chia cko 3 chỉ có thể có số dư là 0 hoặc 1

Vậy A là số chính phương

Chỗ nào hong hiểu bn hỏi mk nhea =))

11 tháng 12 2022

Bài 2: 

Ta có: 2a2+2b2=(a2+2ab+b2)+(a2-2ab+b2)

                        =(a+b)2+(a-b)2 là tổng 2 số chính phương

⇒2a2+2b2 là tổng của 2 số chính phương(đpcm)

27 tháng 7 2016

Gọi số chính phương đã cho là a^2 (a là số tự nhiên) 
* C/m a^2 chia 3 dư 0 hoặc dư 1 
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2. 
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên) 
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0 
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1 
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1. 
Vậy số chính phương chia cho 3 dư 0 hoặc 1 
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé. 
* Mình nghĩ phải là số chính phương lẻ chia 8 dư 1 đúng không bạn? 
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé: 
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên) 
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1 
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1 
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1. 

Vậy số chính phương khi chia cho 3 không thể dư 2 mà chỉ có thể dư 1 hoặc 0

27 tháng 7 2016

(2k+1) 2k (2k-1) 
(2k+1)^2 +4k^2 +(2k-1)^2=4k^2 +4k +1 +4k^2 +4k^2 -4k +1=12k^2+2 chia hết cho 2 không chia hết cho 4 nên không là số chính phương

Mình ko chắc đã đúng đâu

3 tháng 2 2021

hình như là thế này

27 tháng 3 2020

Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath

11 tháng 1 2016

Ta có:

Vì n là tổng của 2 số chính phương

=> đặt n = a2 + b2

=> 2n = (a2 + b2) + (a2 + b2)

=> 2n = (a2 + a2) + (b2 + b2)

=> 2n = 2a2 + 2b2 là tổng của 2 số chính phương (ĐPCM)
Vậy...

19 tháng 1 2016

đặt n=a2+b2=> 2n= a2+2ab+b2+a2-2ab+b2=(a+b)2+(a-b)2=> đfcm

11 tháng 1 2016

Giả sử: a=m2+n2
b=c2+d2
=> m,n,c,d∈Z
ab=(m2+n2)(c2+d2)
ab=m2(c2+d2)+n2(c2+d2)
ab=(m2c2+m2d2)+(n2c2+n2d2)
ab=(mc)2+(md)2+(nc)2+(nd)2
ab=(mc)2+2mcnd+(nd)2+(nc)2−2ncmd+(md)2
ab=(mc+nd)2+(nc−md)2
Vì m,n,c,d∈Z=>mc+nd∈Z,mc−nd∈Z
Vậy tích ab là tổng hai số chính phương