Phân tích thành nhân tử:
\(x^3 -3x^2 +4x-2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
`@` `\text {Ans}`
`\downarrow`
`x^2 + 4x + 3`
`= x^2 + 3x + x + 3`
`= (x^2 + 3x) + (x + 3)`
`= x(x + 3) + (x + 3)`
`= (x+1)(x+3)`
____
`2x^2 + 3x - 5`
`= 2x^2 + 5x - 2x - 5`
`= (2x^2 - 2x) + (5x - 5)`
`= 2x(x - 1) + 5(x - 1)`
`= (2x + 5)(x - 1)`
____
`16x - 5x^2 - 3`
`= 15x + x - 5x^2 - 3`
`= (15x - 5x^2) + (x - 3)`
`= 5x(3 - x) + (x - 3)`
`= -5x(x - 3) + (x - 3)`
`= (1 - 5x)(x - 3)`
\(-5x^2+15x+x-3\) thì phải bằng \(-5x\left(x-3\right)+\left(x-3\right)\) chứ ạ
x3-3x2-4x+12=(x3-3x2)-(4x-12)=x2(x-3)-4(x-3)=(x-3)(x2-4)=(x-3)(x-2)(x+2)
\(x^3-3x^2-4x+12\)
\(=\left(x^3-3x^2\right)-\left(4x-12\right)\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-4\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
\(x^4-4x^3-2x^2-3x+2\)
\(\Leftrightarrow x^4+x^3-5x^3+x^2-5x^2+2x^2-5x+2x+2\)
\(\Leftrightarrow x^4+x^3+x^2-5x^3-5x^2-5x+2x^2+2x+2\)
\(\Leftrightarrow x^2\left(x^2+x+1\right)-5x\left(x^2+x+1\right)+2\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x^2-5x+2\right)\left(x^2+x+1\right)\)
Xin tick ạ !!!
a: \(2y\left(x+2\right)-3x-6\)
\(=2y\left(x+2\right)-3\left(x+2\right)\)
\(=\left(x+2\right)\left(2y-3\right)\)
b: \(3\left(x+4\right)-x^2-4x\)
\(=3\left(x+4\right)-\left(x^2+4x\right)\)
\(=3\left(x+4\right)-x\left(x+4\right)\)
\(=\left(x+4\right)\left(3-x\right)\)
c: \(2\left(x+5\right)-x^2-4x\)
\(=2x+10-x^2-4x\)
\(=-x^2-2x+10\)
\(=-x^2-2x-1+11\)
\(=11-\left(x^2+2x+1\right)\)
\(=11-\left(x+1\right)^2\)
\(=\left(\sqrt{11}-x-1\right)\left(\sqrt{11}+x+1\right)\)
d: \(x^2+6x-3x-18\)
\(=\left(x^2+6x\right)-\left(3x+18\right)\)
\(=x\left(x+6\right)-3\left(x+6\right)\)
\(=\left(x+6\right)\left(x-3\right)\)
\(x^2-y^2+5x-5y\)
\(=\left(x-y\right)\left(x+y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+5\right)\)
\(---\)
\(x^2-16y^2+4x+4\)
\(=\left(x^2+4x+4\right)-16y^2\)
\(=\left(x+2\right)^2-\left(4y\right)^2\)
\(=\left(x+2-4y\right)\left(x+2+4y\right)\)
\(=\left(x-4y+2\right)\left(x+4y+2\right)\)
\(---\)
\(3x^2+6xy+3y^2-12\)
\(=3\left(x^2+2xy+y^2-4\right)\)
\(=3\left[\left(x+y\right)^2-2^2\right]\)
\(=3\left(x+y-2\right)\left(x+y+2\right)\)
\(---\)
\(4x^3+4x^2+x\)
\(=x\left(4x^2+4x+1\right)\)
\(=x\left(2x+1\right)^2\)
e) \(=x^2\left(x+1\right)-2x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x^2-2x+3\right)\)
g) \(=x^2\left(3x-1\right)-x\left(3x-1\right)+4\left(3x-1\right)=\left(3x-1\right)\left(x^2-x+4\right)\)
h) \(=3x^2\left(2x+1\right)-x\left(2x+1\right)+\left(2x+1\right)=\left(2x+1\right)\left(3x^2-x+1\right)\)
i) \(=2x^2\left(2x+1\right)+2x\left(2x+1\right)+\left(2x+1\right)=\left(2x+1\right)\left(2x^2+2x+1\right)\)
\(=x^3 -3x^2 +3x-1 +x-1\\=(x-1)^3 +(x-1)\\=(x-1)[(x-1)^2 +1]\)
Làm thế đúng không nhỉ?